Attention-driven LSTM and GRU deep learning techniques for precise water quality prediction in smart aquaculture
Global food security, economic growth, and biodiversity preservation are impacted significantly by aquaculture. Water quality monitoring (WQM) and water quality prediction (WQP) are essential for profitable as well as sustainable aquaculture. Empirical techniques lead to erroneous WQP, which has a n...
Gespeichert in:
Veröffentlicht in: | Aquaculture international 2024-12, Vol.32 (6), p.8455-8478 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!