Enhancing network security with information-guided-enhanced Runge Kutta feature selection for intrusion detection

Intrusion detection system (IDS) classify network traffic as either threatening or normal based on data features, aiming to identify malicious activities attempting to compromise computer systems. However, the volume of intrusion-related data is increasing daily, and the redundant features within th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing 2024-12, Vol.27 (9), p.12569-12602
Hauptverfasser: Yuan, Li, Tian, Xiongjun, Yuan, Jiacheng, zhang, Jingyu, Dai, Xiaojing, Heidari, Ali Asghar, Chen, Huiling, Yu, Sudan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12602
container_issue 9
container_start_page 12569
container_title Cluster computing
container_volume 27
creator Yuan, Li
Tian, Xiongjun
Yuan, Jiacheng
zhang, Jingyu
Dai, Xiaojing
Heidari, Ali Asghar
Chen, Huiling
Yu, Sudan
description Intrusion detection system (IDS) classify network traffic as either threatening or normal based on data features, aiming to identify malicious activities attempting to compromise computer systems. However, the volume of intrusion-related data is increasing daily, and the redundant features within this data hinder the improvement of IDS classification performance and efficiency. This study introduces a wrapper feature selection model, denoted as bICSRUN-KNN, with Runge–kutta optimization for information-guided communication (ICSRUN) to detect system intrusions. Comparative experiments on the IEEE CEC 2014 benchmark functions demonstrate ICSRUN’s superiority over other algorithms. Subsequently, comparative experiments are conducted using 12 UCI datasets, NSL-KDD, ISCX-URL-2016, ISCX-Tor-NonTor-2017, and LUFlow Network, against competing algorithms. Experimental results demonstrate that the bICSRUN-KNN model achieved remarkable accuracy rates of 98.705% and 98.341% in the binary and multiclass contexts of NSL-KDD. For ISCX-URL-2016, ISCX-Tor-NonTor-2017, and LUFlow Network, accuracy rates of 96.107%, 99.772%, and 88.748% are respectively attained.
doi_str_mv 10.1007/s10586-024-04544-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3109549677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109549677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-55aedb376d8eeafdf3a26a518bc4b153cb4fffc68c6e8ae3fd6cc1b43ec8e81d3</originalsourceid><addsrcrecordid>eNp9kM1OAyEURonRxFp9AVeTuEZhgGFmaZr6E5uYGF0TBi7t1HamApPat_FZfDJpx8SdK-De73wkB6FLSq4pIfImUCLKApOcY8IF5_jzCI2okAxLwdlxurO0lqWQp-gshCUhpJJ5NUJ-2i50a5p2nrUQt51_zwKY3jdxl22buMia1nV-rWPTtXjeNxYshgMCNnvp2zl8fz31MerMgY69h4SvwOzjWQITHn0f9i8LcZifoxOnVwEufs8xerubvk4e8Oz5_nFyO8MmJyRiITTYmsnClgDaWcd0XmhBy9rwmgpmau6cM0VpCig1MGcLY2jNGZgSSmrZGF0NvRvfffQQolp2vW_Tl4pRUgleFVKmVD6kjO9C8ODUxjdr7XeKErV3qwa3KrlVB7fqM0FsgEIKJwf-r_of6geSfILO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109549677</pqid></control><display><type>article</type><title>Enhancing network security with information-guided-enhanced Runge Kutta feature selection for intrusion detection</title><source>SpringerNature Complete Journals</source><creator>Yuan, Li ; Tian, Xiongjun ; Yuan, Jiacheng ; zhang, Jingyu ; Dai, Xiaojing ; Heidari, Ali Asghar ; Chen, Huiling ; Yu, Sudan</creator><creatorcontrib>Yuan, Li ; Tian, Xiongjun ; Yuan, Jiacheng ; zhang, Jingyu ; Dai, Xiaojing ; Heidari, Ali Asghar ; Chen, Huiling ; Yu, Sudan</creatorcontrib><description>Intrusion detection system (IDS) classify network traffic as either threatening or normal based on data features, aiming to identify malicious activities attempting to compromise computer systems. However, the volume of intrusion-related data is increasing daily, and the redundant features within this data hinder the improvement of IDS classification performance and efficiency. This study introduces a wrapper feature selection model, denoted as bICSRUN-KNN, with Runge–kutta optimization for information-guided communication (ICSRUN) to detect system intrusions. Comparative experiments on the IEEE CEC 2014 benchmark functions demonstrate ICSRUN’s superiority over other algorithms. Subsequently, comparative experiments are conducted using 12 UCI datasets, NSL-KDD, ISCX-URL-2016, ISCX-Tor-NonTor-2017, and LUFlow Network, against competing algorithms. Experimental results demonstrate that the bICSRUN-KNN model achieved remarkable accuracy rates of 98.705% and 98.341% in the binary and multiclass contexts of NSL-KDD. For ISCX-URL-2016, ISCX-Tor-NonTor-2017, and LUFlow Network, accuracy rates of 96.107%, 99.772%, and 88.748% are respectively attained.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-024-04544-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Communication ; Communications traffic ; Computer Communication Networks ; Computer Science ; Datasets ; Feature selection ; Heuristic ; Internet of Things ; Intrusion detection systems ; Machine learning ; Methods ; Neural networks ; Operating Systems ; Optimization algorithms ; Processor Architectures ; Runge-Kutta method</subject><ispartof>Cluster computing, 2024-12, Vol.27 (9), p.12569-12602</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-55aedb376d8eeafdf3a26a518bc4b153cb4fffc68c6e8ae3fd6cc1b43ec8e81d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10586-024-04544-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10586-024-04544-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Yuan, Li</creatorcontrib><creatorcontrib>Tian, Xiongjun</creatorcontrib><creatorcontrib>Yuan, Jiacheng</creatorcontrib><creatorcontrib>zhang, Jingyu</creatorcontrib><creatorcontrib>Dai, Xiaojing</creatorcontrib><creatorcontrib>Heidari, Ali Asghar</creatorcontrib><creatorcontrib>Chen, Huiling</creatorcontrib><creatorcontrib>Yu, Sudan</creatorcontrib><title>Enhancing network security with information-guided-enhanced Runge Kutta feature selection for intrusion detection</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Intrusion detection system (IDS) classify network traffic as either threatening or normal based on data features, aiming to identify malicious activities attempting to compromise computer systems. However, the volume of intrusion-related data is increasing daily, and the redundant features within this data hinder the improvement of IDS classification performance and efficiency. This study introduces a wrapper feature selection model, denoted as bICSRUN-KNN, with Runge–kutta optimization for information-guided communication (ICSRUN) to detect system intrusions. Comparative experiments on the IEEE CEC 2014 benchmark functions demonstrate ICSRUN’s superiority over other algorithms. Subsequently, comparative experiments are conducted using 12 UCI datasets, NSL-KDD, ISCX-URL-2016, ISCX-Tor-NonTor-2017, and LUFlow Network, against competing algorithms. Experimental results demonstrate that the bICSRUN-KNN model achieved remarkable accuracy rates of 98.705% and 98.341% in the binary and multiclass contexts of NSL-KDD. For ISCX-URL-2016, ISCX-Tor-NonTor-2017, and LUFlow Network, accuracy rates of 96.107%, 99.772%, and 88.748% are respectively attained.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Communication</subject><subject>Communications traffic</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Feature selection</subject><subject>Heuristic</subject><subject>Internet of Things</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Operating Systems</subject><subject>Optimization algorithms</subject><subject>Processor Architectures</subject><subject>Runge-Kutta method</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEURonRxFp9AVeTuEZhgGFmaZr6E5uYGF0TBi7t1HamApPat_FZfDJpx8SdK-De73wkB6FLSq4pIfImUCLKApOcY8IF5_jzCI2okAxLwdlxurO0lqWQp-gshCUhpJJ5NUJ-2i50a5p2nrUQt51_zwKY3jdxl22buMia1nV-rWPTtXjeNxYshgMCNnvp2zl8fz31MerMgY69h4SvwOzjWQITHn0f9i8LcZifoxOnVwEufs8xerubvk4e8Oz5_nFyO8MmJyRiITTYmsnClgDaWcd0XmhBy9rwmgpmau6cM0VpCig1MGcLY2jNGZgSSmrZGF0NvRvfffQQolp2vW_Tl4pRUgleFVKmVD6kjO9C8ODUxjdr7XeKErV3qwa3KrlVB7fqM0FsgEIKJwf-r_of6geSfILO</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Yuan, Li</creator><creator>Tian, Xiongjun</creator><creator>Yuan, Jiacheng</creator><creator>zhang, Jingyu</creator><creator>Dai, Xiaojing</creator><creator>Heidari, Ali Asghar</creator><creator>Chen, Huiling</creator><creator>Yu, Sudan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241201</creationdate><title>Enhancing network security with information-guided-enhanced Runge Kutta feature selection for intrusion detection</title><author>Yuan, Li ; Tian, Xiongjun ; Yuan, Jiacheng ; zhang, Jingyu ; Dai, Xiaojing ; Heidari, Ali Asghar ; Chen, Huiling ; Yu, Sudan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-55aedb376d8eeafdf3a26a518bc4b153cb4fffc68c6e8ae3fd6cc1b43ec8e81d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Communication</topic><topic>Communications traffic</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Feature selection</topic><topic>Heuristic</topic><topic>Internet of Things</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Operating Systems</topic><topic>Optimization algorithms</topic><topic>Processor Architectures</topic><topic>Runge-Kutta method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Li</creatorcontrib><creatorcontrib>Tian, Xiongjun</creatorcontrib><creatorcontrib>Yuan, Jiacheng</creatorcontrib><creatorcontrib>zhang, Jingyu</creatorcontrib><creatorcontrib>Dai, Xiaojing</creatorcontrib><creatorcontrib>Heidari, Ali Asghar</creatorcontrib><creatorcontrib>Chen, Huiling</creatorcontrib><creatorcontrib>Yu, Sudan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Li</au><au>Tian, Xiongjun</au><au>Yuan, Jiacheng</au><au>zhang, Jingyu</au><au>Dai, Xiaojing</au><au>Heidari, Ali Asghar</au><au>Chen, Huiling</au><au>Yu, Sudan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing network security with information-guided-enhanced Runge Kutta feature selection for intrusion detection</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>27</volume><issue>9</issue><spage>12569</spage><epage>12602</epage><pages>12569-12602</pages><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Intrusion detection system (IDS) classify network traffic as either threatening or normal based on data features, aiming to identify malicious activities attempting to compromise computer systems. However, the volume of intrusion-related data is increasing daily, and the redundant features within this data hinder the improvement of IDS classification performance and efficiency. This study introduces a wrapper feature selection model, denoted as bICSRUN-KNN, with Runge–kutta optimization for information-guided communication (ICSRUN) to detect system intrusions. Comparative experiments on the IEEE CEC 2014 benchmark functions demonstrate ICSRUN’s superiority over other algorithms. Subsequently, comparative experiments are conducted using 12 UCI datasets, NSL-KDD, ISCX-URL-2016, ISCX-Tor-NonTor-2017, and LUFlow Network, against competing algorithms. Experimental results demonstrate that the bICSRUN-KNN model achieved remarkable accuracy rates of 98.705% and 98.341% in the binary and multiclass contexts of NSL-KDD. For ISCX-URL-2016, ISCX-Tor-NonTor-2017, and LUFlow Network, accuracy rates of 96.107%, 99.772%, and 88.748% are respectively attained.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-024-04544-x</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2024-12, Vol.27 (9), p.12569-12602
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_3109549677
source SpringerNature Complete Journals
subjects Accuracy
Algorithms
Artificial intelligence
Communication
Communications traffic
Computer Communication Networks
Computer Science
Datasets
Feature selection
Heuristic
Internet of Things
Intrusion detection systems
Machine learning
Methods
Neural networks
Operating Systems
Optimization algorithms
Processor Architectures
Runge-Kutta method
title Enhancing network security with information-guided-enhanced Runge Kutta feature selection for intrusion detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20network%20security%20with%20information-guided-enhanced%20Runge%C2%A0Kutta%20feature%20selection%20for%20intrusion%20detection&rft.jtitle=Cluster%20computing&rft.au=Yuan,%20Li&rft.date=2024-12-01&rft.volume=27&rft.issue=9&rft.spage=12569&rft.epage=12602&rft.pages=12569-12602&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-024-04544-x&rft_dat=%3Cproquest_cross%3E3109549677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109549677&rft_id=info:pmid/&rfr_iscdi=true