How predictable is the anomaly pattern of summer extreme high-temperature days over Central Asia?

Extreme high-temperature events pose huge threats on human health and ecological environment. Central Asia (CA), located in an arid region, experiences frequent occurrences of extreme high-temperature events with regional discrepancy. However, it is unknown to what extent the distribution of summer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2024-08, Vol.62 (8), p.7651-7664
Hauptverfasser: Yao, Mengyuan, Li, Juan, Zheng, Changshan, Yao, Mengying, Zhu, Zhiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7664
container_issue 8
container_start_page 7651
container_title Climate dynamics
container_volume 62
creator Yao, Mengyuan
Li, Juan
Zheng, Changshan
Yao, Mengying
Zhu, Zhiwei
description Extreme high-temperature events pose huge threats on human health and ecological environment. Central Asia (CA), located in an arid region, experiences frequent occurrences of extreme high-temperature events with regional discrepancy. However, it is unknown to what extent the distribution of summer extreme high-temperature events over CA can be predicted. This study aims to investigate the dynamic origins of summer distribution of extreme high-temperature days (EHDs) over CA and estimate the predictability using Predictable Mode Analysis (PMA). Based on daily maximum temperature data from 1980 to 2010, two major EOF (Empirical Orthogonal Function) modes of EHDs over CA are identified. The first mode exhibits a homogeneous positive pattern, which is associated with a barotropic anticyclonic anomaly that covers the entire CA. The second mode features a meridional dipole pattern, corresponding to a north to south see-saw geopotential height anomaly pattern in CA. Based on the understanding of the simultaneous physical factors and tracing lower boundary anomalous forcing in the previous season, two physical predictors are selected for each principal component (PC), and a set of Physics-based Empirical (P-E) models is established. The temporal correlation coefficient (TCC) skill between observed and predicted PC1 (PC2) is 0.60 (0.74) during the independent forecast period (2010–2021). According to the criteria of PMA, the first two modes can be considered as predictable modes. If predictable modes can be perfectly predicted, 64.8% of the total observed variability of EHDs over CA is potentially predictable. Using the predicted values of the first two PCs and the corresponding observed EOF patterns, the predicted distribution of EHDs can be reconstructed. During the independent forecast period, the areal averaged TCC skill can reach 0.44, providing a reference for actual predictability.
doi_str_mv 10.1007/s00382-024-07299-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3109530164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109530164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-d524ab170c3d677a40cc951cf04225611b79ab79a7e7b64c4484ac687137ea0d3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFz6uzH8kmJylFrVDwoudls5m0Kc2Huxu1_97UCN48DAPD874DDyHXHG45gL4LADITDIRioEWes-yEzLiS4ynL1SmZQS6B6UQn5-QihB0AV6kWM2JX3SftPZa1i7bYI60DjVuktu0auz_Q3saIvqVdRcPQNOgpfkWPDdJtvdmyiE2P3sbBIy3tIdDuY0SW2EZv93QRant_Sc4quw949bvn5O3x4XW5YuuXp-flYs2cAIisTISyBdfgZJlqbRU4lyfcVaCESFLOC53b42jURaqcUpmyLs00lxotlHJObqbe3nfvA4Zodt3g2_GlkRzyRAJP1UiJiXK-C8FjZXpfN9YfDAdzVGkmlWZUaX5UmmwMySkURrjdoP-r_if1DfF3ds8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109530164</pqid></control><display><type>article</type><title>How predictable is the anomaly pattern of summer extreme high-temperature days over Central Asia?</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yao, Mengyuan ; Li, Juan ; Zheng, Changshan ; Yao, Mengying ; Zhu, Zhiwei</creator><creatorcontrib>Yao, Mengyuan ; Li, Juan ; Zheng, Changshan ; Yao, Mengying ; Zhu, Zhiwei</creatorcontrib><description>Extreme high-temperature events pose huge threats on human health and ecological environment. Central Asia (CA), located in an arid region, experiences frequent occurrences of extreme high-temperature events with regional discrepancy. However, it is unknown to what extent the distribution of summer extreme high-temperature events over CA can be predicted. This study aims to investigate the dynamic origins of summer distribution of extreme high-temperature days (EHDs) over CA and estimate the predictability using Predictable Mode Analysis (PMA). Based on daily maximum temperature data from 1980 to 2010, two major EOF (Empirical Orthogonal Function) modes of EHDs over CA are identified. The first mode exhibits a homogeneous positive pattern, which is associated with a barotropic anticyclonic anomaly that covers the entire CA. The second mode features a meridional dipole pattern, corresponding to a north to south see-saw geopotential height anomaly pattern in CA. Based on the understanding of the simultaneous physical factors and tracing lower boundary anomalous forcing in the previous season, two physical predictors are selected for each principal component (PC), and a set of Physics-based Empirical (P-E) models is established. The temporal correlation coefficient (TCC) skill between observed and predicted PC1 (PC2) is 0.60 (0.74) during the independent forecast period (2010–2021). According to the criteria of PMA, the first two modes can be considered as predictable modes. If predictable modes can be perfectly predicted, 64.8% of the total observed variability of EHDs over CA is potentially predictable. Using the predicted values of the first two PCs and the corresponding observed EOF patterns, the predicted distribution of EHDs can be reconstructed. During the independent forecast period, the areal averaged TCC skill can reach 0.44, providing a reference for actual predictability.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-024-07299-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Arid regions ; Arid zones ; Barotropic mode ; Climate change ; Climatology ; Correlation coefficient ; Correlation coefficients ; Daily temperatures ; Dipoles ; Dynamic height ; Earth and Environmental Science ; Earth Sciences ; Extreme high temperatures ; Geophysics/Geodesy ; Geopotential ; Geopotential height ; Heat ; Height anomalies ; High temperature ; Maximum temperatures ; Modes ; Oceanography ; Original Article ; Orthogonal functions ; Physical factors ; Physics ; Summer ; Temperature data</subject><ispartof>Climate dynamics, 2024-08, Vol.62 (8), p.7651-7664</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-d524ab170c3d677a40cc951cf04225611b79ab79a7e7b64c4484ac687137ea0d3</cites><orcidid>0000-0003-3434-5368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-024-07299-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-024-07299-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yao, Mengyuan</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Zheng, Changshan</creatorcontrib><creatorcontrib>Yao, Mengying</creatorcontrib><creatorcontrib>Zhu, Zhiwei</creatorcontrib><title>How predictable is the anomaly pattern of summer extreme high-temperature days over Central Asia?</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Extreme high-temperature events pose huge threats on human health and ecological environment. Central Asia (CA), located in an arid region, experiences frequent occurrences of extreme high-temperature events with regional discrepancy. However, it is unknown to what extent the distribution of summer extreme high-temperature events over CA can be predicted. This study aims to investigate the dynamic origins of summer distribution of extreme high-temperature days (EHDs) over CA and estimate the predictability using Predictable Mode Analysis (PMA). Based on daily maximum temperature data from 1980 to 2010, two major EOF (Empirical Orthogonal Function) modes of EHDs over CA are identified. The first mode exhibits a homogeneous positive pattern, which is associated with a barotropic anticyclonic anomaly that covers the entire CA. The second mode features a meridional dipole pattern, corresponding to a north to south see-saw geopotential height anomaly pattern in CA. Based on the understanding of the simultaneous physical factors and tracing lower boundary anomalous forcing in the previous season, two physical predictors are selected for each principal component (PC), and a set of Physics-based Empirical (P-E) models is established. The temporal correlation coefficient (TCC) skill between observed and predicted PC1 (PC2) is 0.60 (0.74) during the independent forecast period (2010–2021). According to the criteria of PMA, the first two modes can be considered as predictable modes. If predictable modes can be perfectly predicted, 64.8% of the total observed variability of EHDs over CA is potentially predictable. Using the predicted values of the first two PCs and the corresponding observed EOF patterns, the predicted distribution of EHDs can be reconstructed. During the independent forecast period, the areal averaged TCC skill can reach 0.44, providing a reference for actual predictability.</description><subject>Arid regions</subject><subject>Arid zones</subject><subject>Barotropic mode</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Daily temperatures</subject><subject>Dipoles</subject><subject>Dynamic height</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Extreme high temperatures</subject><subject>Geophysics/Geodesy</subject><subject>Geopotential</subject><subject>Geopotential height</subject><subject>Heat</subject><subject>Height anomalies</subject><subject>High temperature</subject><subject>Maximum temperatures</subject><subject>Modes</subject><subject>Oceanography</subject><subject>Original Article</subject><subject>Orthogonal functions</subject><subject>Physical factors</subject><subject>Physics</subject><subject>Summer</subject><subject>Temperature data</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFz6uzH8kmJylFrVDwoudls5m0Kc2Huxu1_97UCN48DAPD874DDyHXHG45gL4LADITDIRioEWes-yEzLiS4ynL1SmZQS6B6UQn5-QihB0AV6kWM2JX3SftPZa1i7bYI60DjVuktu0auz_Q3saIvqVdRcPQNOgpfkWPDdJtvdmyiE2P3sbBIy3tIdDuY0SW2EZv93QRant_Sc4quw949bvn5O3x4XW5YuuXp-flYs2cAIisTISyBdfgZJlqbRU4lyfcVaCESFLOC53b42jURaqcUpmyLs00lxotlHJObqbe3nfvA4Zodt3g2_GlkRzyRAJP1UiJiXK-C8FjZXpfN9YfDAdzVGkmlWZUaX5UmmwMySkURrjdoP-r_if1DfF3ds8</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Yao, Mengyuan</creator><creator>Li, Juan</creator><creator>Zheng, Changshan</creator><creator>Yao, Mengying</creator><creator>Zhu, Zhiwei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-3434-5368</orcidid></search><sort><creationdate>20240801</creationdate><title>How predictable is the anomaly pattern of summer extreme high-temperature days over Central Asia?</title><author>Yao, Mengyuan ; Li, Juan ; Zheng, Changshan ; Yao, Mengying ; Zhu, Zhiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-d524ab170c3d677a40cc951cf04225611b79ab79a7e7b64c4484ac687137ea0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arid regions</topic><topic>Arid zones</topic><topic>Barotropic mode</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Daily temperatures</topic><topic>Dipoles</topic><topic>Dynamic height</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Extreme high temperatures</topic><topic>Geophysics/Geodesy</topic><topic>Geopotential</topic><topic>Geopotential height</topic><topic>Heat</topic><topic>Height anomalies</topic><topic>High temperature</topic><topic>Maximum temperatures</topic><topic>Modes</topic><topic>Oceanography</topic><topic>Original Article</topic><topic>Orthogonal functions</topic><topic>Physical factors</topic><topic>Physics</topic><topic>Summer</topic><topic>Temperature data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Mengyuan</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Zheng, Changshan</creatorcontrib><creatorcontrib>Yao, Mengying</creatorcontrib><creatorcontrib>Zhu, Zhiwei</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Mengyuan</au><au>Li, Juan</au><au>Zheng, Changshan</au><au>Yao, Mengying</au><au>Zhu, Zhiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How predictable is the anomaly pattern of summer extreme high-temperature days over Central Asia?</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>62</volume><issue>8</issue><spage>7651</spage><epage>7664</epage><pages>7651-7664</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Extreme high-temperature events pose huge threats on human health and ecological environment. Central Asia (CA), located in an arid region, experiences frequent occurrences of extreme high-temperature events with regional discrepancy. However, it is unknown to what extent the distribution of summer extreme high-temperature events over CA can be predicted. This study aims to investigate the dynamic origins of summer distribution of extreme high-temperature days (EHDs) over CA and estimate the predictability using Predictable Mode Analysis (PMA). Based on daily maximum temperature data from 1980 to 2010, two major EOF (Empirical Orthogonal Function) modes of EHDs over CA are identified. The first mode exhibits a homogeneous positive pattern, which is associated with a barotropic anticyclonic anomaly that covers the entire CA. The second mode features a meridional dipole pattern, corresponding to a north to south see-saw geopotential height anomaly pattern in CA. Based on the understanding of the simultaneous physical factors and tracing lower boundary anomalous forcing in the previous season, two physical predictors are selected for each principal component (PC), and a set of Physics-based Empirical (P-E) models is established. The temporal correlation coefficient (TCC) skill between observed and predicted PC1 (PC2) is 0.60 (0.74) during the independent forecast period (2010–2021). According to the criteria of PMA, the first two modes can be considered as predictable modes. If predictable modes can be perfectly predicted, 64.8% of the total observed variability of EHDs over CA is potentially predictable. Using the predicted values of the first two PCs and the corresponding observed EOF patterns, the predicted distribution of EHDs can be reconstructed. During the independent forecast period, the areal averaged TCC skill can reach 0.44, providing a reference for actual predictability.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-024-07299-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3434-5368</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2024-08, Vol.62 (8), p.7651-7664
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_journals_3109530164
source SpringerLink Journals - AutoHoldings
subjects Arid regions
Arid zones
Barotropic mode
Climate change
Climatology
Correlation coefficient
Correlation coefficients
Daily temperatures
Dipoles
Dynamic height
Earth and Environmental Science
Earth Sciences
Extreme high temperatures
Geophysics/Geodesy
Geopotential
Geopotential height
Heat
Height anomalies
High temperature
Maximum temperatures
Modes
Oceanography
Original Article
Orthogonal functions
Physical factors
Physics
Summer
Temperature data
title How predictable is the anomaly pattern of summer extreme high-temperature days over Central Asia?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20predictable%20is%20the%20anomaly%20pattern%20of%20summer%20extreme%20high-temperature%20days%20over%20Central%20Asia?&rft.jtitle=Climate%20dynamics&rft.au=Yao,%20Mengyuan&rft.date=2024-08-01&rft.volume=62&rft.issue=8&rft.spage=7651&rft.epage=7664&rft.pages=7651-7664&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-024-07299-8&rft_dat=%3Cproquest_cross%3E3109530164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109530164&rft_id=info:pmid/&rfr_iscdi=true