Analysis of global vegetation resilience under different future climate scenarios

Terrestrial ecosystems are experiencing notable changes due to global change, making it crucial to determine their future responses under different climate scenarios. In previous theories, it has been proposed that resilience, which reflects the ability of ecosystems to withstand disturbances such a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2024-08, Vol.62 (8), p.7967-7980
Hauptverfasser: Chen, Zheng, Fan, Peiyi, Hou, Xintong, Ji, Fei, Li, Li, Qian, Zhonghua, Feng, Guolin, Sun, Guiquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7980
container_issue 8
container_start_page 7967
container_title Climate dynamics
container_volume 62
creator Chen, Zheng
Fan, Peiyi
Hou, Xintong
Ji, Fei
Li, Li
Qian, Zhonghua
Feng, Guolin
Sun, Guiquan
description Terrestrial ecosystems are experiencing notable changes due to global change, making it crucial to determine their future responses under different climate scenarios. In previous theories, it has been proposed that resilience, which reflects the ability of ecosystems to withstand disturbances such as drought and wildfires, can serve as an indicator of the ecosystem structure and function. In this study, we applied ecosystem resilience as a metric to assess the state of terrestrial ecosystems. Our analysis revealed a positive trend in vegetation growth across different climate scenarios. Additionally, SSP5-8.5 having the least masked areas exhibits the smallest uncertainties among the considered scenarios. We further examined the theoretical recovery rates based on variance and lag-1 auto-correlation (AC1) to quantify resilience, considering three future periods (near-term, mid-term, and long-term). The theoretical recovery rates decrease from the near-term to the long-term, while larger uncertainties are observed in the long-term compared to the near-term. Notably, equatorial regions experience a significant degradation in resilience, despite the anticipated increase in vegetation growth. Our study highlights the complex dynamics between vegetation growth and ecosystem resilience, disentangling the resilience change of terrestrial ecosystems in the face of global change.
doi_str_mv 10.1007/s00382-024-07317-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3109530134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109530134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-807faeeb6a249376d5d2e90f34f76576e231eec731299cdea370137d66830bb63</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcBN26qL3lt0iyHwS8YEEHXIW1fhg6ddkxawX9vxhEEF64Cj3MvuYexSwE3AkDfRgAsZQYyz0Cj0Jk5YjORYzqVJj9mMzAImS50ccrOYtwAiFxpOWMvi951n7GNfPB83Q2V6_gHrWl0Yzv0PFBsu5b6mvjUNxR403pPgfqR-2mcAvG6a7duJB5r6l1oh3jOTrzrIl38vHP2dn_3unzMVs8PT8vFKqsl4piVoL0jqpSTuUGtmqKRZMBj7rUqtCKJgqhOY6QxdUMONQjUjVIlQlUpnLPrQ-8uDO8TxdFu2_SJrnM9DVO0KAoshQElEnr1B90MU0jD9xSYAlNznih5oOowxBjI211I28KnFWD3lu3Bsk2W7bdla1IID6GY4H5N4bf6n9QXDRN_Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109530134</pqid></control><display><type>article</type><title>Analysis of global vegetation resilience under different future climate scenarios</title><source>SpringerLink Journals</source><creator>Chen, Zheng ; Fan, Peiyi ; Hou, Xintong ; Ji, Fei ; Li, Li ; Qian, Zhonghua ; Feng, Guolin ; Sun, Guiquan</creator><creatorcontrib>Chen, Zheng ; Fan, Peiyi ; Hou, Xintong ; Ji, Fei ; Li, Li ; Qian, Zhonghua ; Feng, Guolin ; Sun, Guiquan</creatorcontrib><description>Terrestrial ecosystems are experiencing notable changes due to global change, making it crucial to determine their future responses under different climate scenarios. In previous theories, it has been proposed that resilience, which reflects the ability of ecosystems to withstand disturbances such as drought and wildfires, can serve as an indicator of the ecosystem structure and function. In this study, we applied ecosystem resilience as a metric to assess the state of terrestrial ecosystems. Our analysis revealed a positive trend in vegetation growth across different climate scenarios. Additionally, SSP5-8.5 having the least masked areas exhibits the smallest uncertainties among the considered scenarios. We further examined the theoretical recovery rates based on variance and lag-1 auto-correlation (AC1) to quantify resilience, considering three future periods (near-term, mid-term, and long-term). The theoretical recovery rates decrease from the near-term to the long-term, while larger uncertainties are observed in the long-term compared to the near-term. Notably, equatorial regions experience a significant degradation in resilience, despite the anticipated increase in vegetation growth. Our study highlights the complex dynamics between vegetation growth and ecosystem resilience, disentangling the resilience change of terrestrial ecosystems in the face of global change.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-024-07317-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>autocorrelation ; Climate ; Climate and vegetation ; Climate change ; Climatology ; Drought ; Earth and Environmental Science ; Earth Sciences ; ecological resilience ; Ecosystem resilience ; Ecosystem structure ; Ecosystems ; Equatorial regions ; Future climates ; Geophysics/Geodesy ; global change ; Oceanography ; Original Article ; Recovery ; Resilience ; Structure-function relationships ; Terrestrial ecosystems ; Uncertainty ; variance ; Vegetation ; Vegetation growth ; Wildfires</subject><ispartof>Climate dynamics, 2024-08, Vol.62 (8), p.7967-7980</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-807faeeb6a249376d5d2e90f34f76576e231eec731299cdea370137d66830bb63</cites><orcidid>0000-0001-9932-3878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-024-07317-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-024-07317-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Fan, Peiyi</creatorcontrib><creatorcontrib>Hou, Xintong</creatorcontrib><creatorcontrib>Ji, Fei</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Qian, Zhonghua</creatorcontrib><creatorcontrib>Feng, Guolin</creatorcontrib><creatorcontrib>Sun, Guiquan</creatorcontrib><title>Analysis of global vegetation resilience under different future climate scenarios</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Terrestrial ecosystems are experiencing notable changes due to global change, making it crucial to determine their future responses under different climate scenarios. In previous theories, it has been proposed that resilience, which reflects the ability of ecosystems to withstand disturbances such as drought and wildfires, can serve as an indicator of the ecosystem structure and function. In this study, we applied ecosystem resilience as a metric to assess the state of terrestrial ecosystems. Our analysis revealed a positive trend in vegetation growth across different climate scenarios. Additionally, SSP5-8.5 having the least masked areas exhibits the smallest uncertainties among the considered scenarios. We further examined the theoretical recovery rates based on variance and lag-1 auto-correlation (AC1) to quantify resilience, considering three future periods (near-term, mid-term, and long-term). The theoretical recovery rates decrease from the near-term to the long-term, while larger uncertainties are observed in the long-term compared to the near-term. Notably, equatorial regions experience a significant degradation in resilience, despite the anticipated increase in vegetation growth. Our study highlights the complex dynamics between vegetation growth and ecosystem resilience, disentangling the resilience change of terrestrial ecosystems in the face of global change.</description><subject>autocorrelation</subject><subject>Climate</subject><subject>Climate and vegetation</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Drought</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>ecological resilience</subject><subject>Ecosystem resilience</subject><subject>Ecosystem structure</subject><subject>Ecosystems</subject><subject>Equatorial regions</subject><subject>Future climates</subject><subject>Geophysics/Geodesy</subject><subject>global change</subject><subject>Oceanography</subject><subject>Original Article</subject><subject>Recovery</subject><subject>Resilience</subject><subject>Structure-function relationships</subject><subject>Terrestrial ecosystems</subject><subject>Uncertainty</subject><subject>variance</subject><subject>Vegetation</subject><subject>Vegetation growth</subject><subject>Wildfires</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcBN26qL3lt0iyHwS8YEEHXIW1fhg6ddkxawX9vxhEEF64Cj3MvuYexSwE3AkDfRgAsZQYyz0Cj0Jk5YjORYzqVJj9mMzAImS50ccrOYtwAiFxpOWMvi951n7GNfPB83Q2V6_gHrWl0Yzv0PFBsu5b6mvjUNxR403pPgfqR-2mcAvG6a7duJB5r6l1oh3jOTrzrIl38vHP2dn_3unzMVs8PT8vFKqsl4piVoL0jqpSTuUGtmqKRZMBj7rUqtCKJgqhOY6QxdUMONQjUjVIlQlUpnLPrQ-8uDO8TxdFu2_SJrnM9DVO0KAoshQElEnr1B90MU0jD9xSYAlNznih5oOowxBjI211I28KnFWD3lu3Bsk2W7bdla1IID6GY4H5N4bf6n9QXDRN_Zg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Chen, Zheng</creator><creator>Fan, Peiyi</creator><creator>Hou, Xintong</creator><creator>Ji, Fei</creator><creator>Li, Li</creator><creator>Qian, Zhonghua</creator><creator>Feng, Guolin</creator><creator>Sun, Guiquan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9932-3878</orcidid></search><sort><creationdate>20240801</creationdate><title>Analysis of global vegetation resilience under different future climate scenarios</title><author>Chen, Zheng ; Fan, Peiyi ; Hou, Xintong ; Ji, Fei ; Li, Li ; Qian, Zhonghua ; Feng, Guolin ; Sun, Guiquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-807faeeb6a249376d5d2e90f34f76576e231eec731299cdea370137d66830bb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>autocorrelation</topic><topic>Climate</topic><topic>Climate and vegetation</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Drought</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>ecological resilience</topic><topic>Ecosystem resilience</topic><topic>Ecosystem structure</topic><topic>Ecosystems</topic><topic>Equatorial regions</topic><topic>Future climates</topic><topic>Geophysics/Geodesy</topic><topic>global change</topic><topic>Oceanography</topic><topic>Original Article</topic><topic>Recovery</topic><topic>Resilience</topic><topic>Structure-function relationships</topic><topic>Terrestrial ecosystems</topic><topic>Uncertainty</topic><topic>variance</topic><topic>Vegetation</topic><topic>Vegetation growth</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Fan, Peiyi</creatorcontrib><creatorcontrib>Hou, Xintong</creatorcontrib><creatorcontrib>Ji, Fei</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Qian, Zhonghua</creatorcontrib><creatorcontrib>Feng, Guolin</creatorcontrib><creatorcontrib>Sun, Guiquan</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zheng</au><au>Fan, Peiyi</au><au>Hou, Xintong</au><au>Ji, Fei</au><au>Li, Li</au><au>Qian, Zhonghua</au><au>Feng, Guolin</au><au>Sun, Guiquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of global vegetation resilience under different future climate scenarios</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>62</volume><issue>8</issue><spage>7967</spage><epage>7980</epage><pages>7967-7980</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Terrestrial ecosystems are experiencing notable changes due to global change, making it crucial to determine their future responses under different climate scenarios. In previous theories, it has been proposed that resilience, which reflects the ability of ecosystems to withstand disturbances such as drought and wildfires, can serve as an indicator of the ecosystem structure and function. In this study, we applied ecosystem resilience as a metric to assess the state of terrestrial ecosystems. Our analysis revealed a positive trend in vegetation growth across different climate scenarios. Additionally, SSP5-8.5 having the least masked areas exhibits the smallest uncertainties among the considered scenarios. We further examined the theoretical recovery rates based on variance and lag-1 auto-correlation (AC1) to quantify resilience, considering three future periods (near-term, mid-term, and long-term). The theoretical recovery rates decrease from the near-term to the long-term, while larger uncertainties are observed in the long-term compared to the near-term. Notably, equatorial regions experience a significant degradation in resilience, despite the anticipated increase in vegetation growth. Our study highlights the complex dynamics between vegetation growth and ecosystem resilience, disentangling the resilience change of terrestrial ecosystems in the face of global change.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-024-07317-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9932-3878</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2024-08, Vol.62 (8), p.7967-7980
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_journals_3109530134
source SpringerLink Journals
subjects autocorrelation
Climate
Climate and vegetation
Climate change
Climatology
Drought
Earth and Environmental Science
Earth Sciences
ecological resilience
Ecosystem resilience
Ecosystem structure
Ecosystems
Equatorial regions
Future climates
Geophysics/Geodesy
global change
Oceanography
Original Article
Recovery
Resilience
Structure-function relationships
Terrestrial ecosystems
Uncertainty
variance
Vegetation
Vegetation growth
Wildfires
title Analysis of global vegetation resilience under different future climate scenarios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20global%20vegetation%20resilience%20under%20different%20future%20climate%20scenarios&rft.jtitle=Climate%20dynamics&rft.au=Chen,%20Zheng&rft.date=2024-08-01&rft.volume=62&rft.issue=8&rft.spage=7967&rft.epage=7980&rft.pages=7967-7980&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-024-07317-9&rft_dat=%3Cproquest_cross%3E3109530134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109530134&rft_id=info:pmid/&rfr_iscdi=true