Analysis of global vegetation resilience under different future climate scenarios
Terrestrial ecosystems are experiencing notable changes due to global change, making it crucial to determine their future responses under different climate scenarios. In previous theories, it has been proposed that resilience, which reflects the ability of ecosystems to withstand disturbances such a...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2024-08, Vol.62 (8), p.7967-7980 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7980 |
---|---|
container_issue | 8 |
container_start_page | 7967 |
container_title | Climate dynamics |
container_volume | 62 |
creator | Chen, Zheng Fan, Peiyi Hou, Xintong Ji, Fei Li, Li Qian, Zhonghua Feng, Guolin Sun, Guiquan |
description | Terrestrial ecosystems are experiencing notable changes due to global change, making it crucial to determine their future responses under different climate scenarios. In previous theories, it has been proposed that resilience, which reflects the ability of ecosystems to withstand disturbances such as drought and wildfires, can serve as an indicator of the ecosystem structure and function. In this study, we applied ecosystem resilience as a metric to assess the state of terrestrial ecosystems. Our analysis revealed a positive trend in vegetation growth across different climate scenarios. Additionally, SSP5-8.5 having the least masked areas exhibits the smallest uncertainties among the considered scenarios. We further examined the theoretical recovery rates based on variance and lag-1 auto-correlation (AC1) to quantify resilience, considering three future periods (near-term, mid-term, and long-term). The theoretical recovery rates decrease from the near-term to the long-term, while larger uncertainties are observed in the long-term compared to the near-term. Notably, equatorial regions experience a significant degradation in resilience, despite the anticipated increase in vegetation growth. Our study highlights the complex dynamics between vegetation growth and ecosystem resilience, disentangling the resilience change of terrestrial ecosystems in the face of global change. |
doi_str_mv | 10.1007/s00382-024-07317-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3109530134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109530134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-807faeeb6a249376d5d2e90f34f76576e231eec731299cdea370137d66830bb63</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcBN26qL3lt0iyHwS8YEEHXIW1fhg6ddkxawX9vxhEEF64Cj3MvuYexSwE3AkDfRgAsZQYyz0Cj0Jk5YjORYzqVJj9mMzAImS50ccrOYtwAiFxpOWMvi951n7GNfPB83Q2V6_gHrWl0Yzv0PFBsu5b6mvjUNxR403pPgfqR-2mcAvG6a7duJB5r6l1oh3jOTrzrIl38vHP2dn_3unzMVs8PT8vFKqsl4piVoL0jqpSTuUGtmqKRZMBj7rUqtCKJgqhOY6QxdUMONQjUjVIlQlUpnLPrQ-8uDO8TxdFu2_SJrnM9DVO0KAoshQElEnr1B90MU0jD9xSYAlNznih5oOowxBjI211I28KnFWD3lu3Bsk2W7bdla1IID6GY4H5N4bf6n9QXDRN_Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109530134</pqid></control><display><type>article</type><title>Analysis of global vegetation resilience under different future climate scenarios</title><source>SpringerLink Journals</source><creator>Chen, Zheng ; Fan, Peiyi ; Hou, Xintong ; Ji, Fei ; Li, Li ; Qian, Zhonghua ; Feng, Guolin ; Sun, Guiquan</creator><creatorcontrib>Chen, Zheng ; Fan, Peiyi ; Hou, Xintong ; Ji, Fei ; Li, Li ; Qian, Zhonghua ; Feng, Guolin ; Sun, Guiquan</creatorcontrib><description>Terrestrial ecosystems are experiencing notable changes due to global change, making it crucial to determine their future responses under different climate scenarios. In previous theories, it has been proposed that resilience, which reflects the ability of ecosystems to withstand disturbances such as drought and wildfires, can serve as an indicator of the ecosystem structure and function. In this study, we applied ecosystem resilience as a metric to assess the state of terrestrial ecosystems. Our analysis revealed a positive trend in vegetation growth across different climate scenarios. Additionally, SSP5-8.5 having the least masked areas exhibits the smallest uncertainties among the considered scenarios. We further examined the theoretical recovery rates based on variance and lag-1 auto-correlation (AC1) to quantify resilience, considering three future periods (near-term, mid-term, and long-term). The theoretical recovery rates decrease from the near-term to the long-term, while larger uncertainties are observed in the long-term compared to the near-term. Notably, equatorial regions experience a significant degradation in resilience, despite the anticipated increase in vegetation growth. Our study highlights the complex dynamics between vegetation growth and ecosystem resilience, disentangling the resilience change of terrestrial ecosystems in the face of global change.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-024-07317-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>autocorrelation ; Climate ; Climate and vegetation ; Climate change ; Climatology ; Drought ; Earth and Environmental Science ; Earth Sciences ; ecological resilience ; Ecosystem resilience ; Ecosystem structure ; Ecosystems ; Equatorial regions ; Future climates ; Geophysics/Geodesy ; global change ; Oceanography ; Original Article ; Recovery ; Resilience ; Structure-function relationships ; Terrestrial ecosystems ; Uncertainty ; variance ; Vegetation ; Vegetation growth ; Wildfires</subject><ispartof>Climate dynamics, 2024-08, Vol.62 (8), p.7967-7980</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-807faeeb6a249376d5d2e90f34f76576e231eec731299cdea370137d66830bb63</cites><orcidid>0000-0001-9932-3878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-024-07317-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-024-07317-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Fan, Peiyi</creatorcontrib><creatorcontrib>Hou, Xintong</creatorcontrib><creatorcontrib>Ji, Fei</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Qian, Zhonghua</creatorcontrib><creatorcontrib>Feng, Guolin</creatorcontrib><creatorcontrib>Sun, Guiquan</creatorcontrib><title>Analysis of global vegetation resilience under different future climate scenarios</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Terrestrial ecosystems are experiencing notable changes due to global change, making it crucial to determine their future responses under different climate scenarios. In previous theories, it has been proposed that resilience, which reflects the ability of ecosystems to withstand disturbances such as drought and wildfires, can serve as an indicator of the ecosystem structure and function. In this study, we applied ecosystem resilience as a metric to assess the state of terrestrial ecosystems. Our analysis revealed a positive trend in vegetation growth across different climate scenarios. Additionally, SSP5-8.5 having the least masked areas exhibits the smallest uncertainties among the considered scenarios. We further examined the theoretical recovery rates based on variance and lag-1 auto-correlation (AC1) to quantify resilience, considering three future periods (near-term, mid-term, and long-term). The theoretical recovery rates decrease from the near-term to the long-term, while larger uncertainties are observed in the long-term compared to the near-term. Notably, equatorial regions experience a significant degradation in resilience, despite the anticipated increase in vegetation growth. Our study highlights the complex dynamics between vegetation growth and ecosystem resilience, disentangling the resilience change of terrestrial ecosystems in the face of global change.</description><subject>autocorrelation</subject><subject>Climate</subject><subject>Climate and vegetation</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Drought</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>ecological resilience</subject><subject>Ecosystem resilience</subject><subject>Ecosystem structure</subject><subject>Ecosystems</subject><subject>Equatorial regions</subject><subject>Future climates</subject><subject>Geophysics/Geodesy</subject><subject>global change</subject><subject>Oceanography</subject><subject>Original Article</subject><subject>Recovery</subject><subject>Resilience</subject><subject>Structure-function relationships</subject><subject>Terrestrial ecosystems</subject><subject>Uncertainty</subject><subject>variance</subject><subject>Vegetation</subject><subject>Vegetation growth</subject><subject>Wildfires</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcBN26qL3lt0iyHwS8YEEHXIW1fhg6ddkxawX9vxhEEF64Cj3MvuYexSwE3AkDfRgAsZQYyz0Cj0Jk5YjORYzqVJj9mMzAImS50ccrOYtwAiFxpOWMvi951n7GNfPB83Q2V6_gHrWl0Yzv0PFBsu5b6mvjUNxR403pPgfqR-2mcAvG6a7duJB5r6l1oh3jOTrzrIl38vHP2dn_3unzMVs8PT8vFKqsl4piVoL0jqpSTuUGtmqKRZMBj7rUqtCKJgqhOY6QxdUMONQjUjVIlQlUpnLPrQ-8uDO8TxdFu2_SJrnM9DVO0KAoshQElEnr1B90MU0jD9xSYAlNznih5oOowxBjI211I28KnFWD3lu3Bsk2W7bdla1IID6GY4H5N4bf6n9QXDRN_Zg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Chen, Zheng</creator><creator>Fan, Peiyi</creator><creator>Hou, Xintong</creator><creator>Ji, Fei</creator><creator>Li, Li</creator><creator>Qian, Zhonghua</creator><creator>Feng, Guolin</creator><creator>Sun, Guiquan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9932-3878</orcidid></search><sort><creationdate>20240801</creationdate><title>Analysis of global vegetation resilience under different future climate scenarios</title><author>Chen, Zheng ; Fan, Peiyi ; Hou, Xintong ; Ji, Fei ; Li, Li ; Qian, Zhonghua ; Feng, Guolin ; Sun, Guiquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-807faeeb6a249376d5d2e90f34f76576e231eec731299cdea370137d66830bb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>autocorrelation</topic><topic>Climate</topic><topic>Climate and vegetation</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Drought</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>ecological resilience</topic><topic>Ecosystem resilience</topic><topic>Ecosystem structure</topic><topic>Ecosystems</topic><topic>Equatorial regions</topic><topic>Future climates</topic><topic>Geophysics/Geodesy</topic><topic>global change</topic><topic>Oceanography</topic><topic>Original Article</topic><topic>Recovery</topic><topic>Resilience</topic><topic>Structure-function relationships</topic><topic>Terrestrial ecosystems</topic><topic>Uncertainty</topic><topic>variance</topic><topic>Vegetation</topic><topic>Vegetation growth</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Fan, Peiyi</creatorcontrib><creatorcontrib>Hou, Xintong</creatorcontrib><creatorcontrib>Ji, Fei</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Qian, Zhonghua</creatorcontrib><creatorcontrib>Feng, Guolin</creatorcontrib><creatorcontrib>Sun, Guiquan</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zheng</au><au>Fan, Peiyi</au><au>Hou, Xintong</au><au>Ji, Fei</au><au>Li, Li</au><au>Qian, Zhonghua</au><au>Feng, Guolin</au><au>Sun, Guiquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of global vegetation resilience under different future climate scenarios</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>62</volume><issue>8</issue><spage>7967</spage><epage>7980</epage><pages>7967-7980</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Terrestrial ecosystems are experiencing notable changes due to global change, making it crucial to determine their future responses under different climate scenarios. In previous theories, it has been proposed that resilience, which reflects the ability of ecosystems to withstand disturbances such as drought and wildfires, can serve as an indicator of the ecosystem structure and function. In this study, we applied ecosystem resilience as a metric to assess the state of terrestrial ecosystems. Our analysis revealed a positive trend in vegetation growth across different climate scenarios. Additionally, SSP5-8.5 having the least masked areas exhibits the smallest uncertainties among the considered scenarios. We further examined the theoretical recovery rates based on variance and lag-1 auto-correlation (AC1) to quantify resilience, considering three future periods (near-term, mid-term, and long-term). The theoretical recovery rates decrease from the near-term to the long-term, while larger uncertainties are observed in the long-term compared to the near-term. Notably, equatorial regions experience a significant degradation in resilience, despite the anticipated increase in vegetation growth. Our study highlights the complex dynamics between vegetation growth and ecosystem resilience, disentangling the resilience change of terrestrial ecosystems in the face of global change.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-024-07317-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9932-3878</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2024-08, Vol.62 (8), p.7967-7980 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_journals_3109530134 |
source | SpringerLink Journals |
subjects | autocorrelation Climate Climate and vegetation Climate change Climatology Drought Earth and Environmental Science Earth Sciences ecological resilience Ecosystem resilience Ecosystem structure Ecosystems Equatorial regions Future climates Geophysics/Geodesy global change Oceanography Original Article Recovery Resilience Structure-function relationships Terrestrial ecosystems Uncertainty variance Vegetation Vegetation growth Wildfires |
title | Analysis of global vegetation resilience under different future climate scenarios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20global%20vegetation%20resilience%20under%20different%20future%20climate%20scenarios&rft.jtitle=Climate%20dynamics&rft.au=Chen,%20Zheng&rft.date=2024-08-01&rft.volume=62&rft.issue=8&rft.spage=7967&rft.epage=7980&rft.pages=7967-7980&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-024-07317-9&rft_dat=%3Cproquest_cross%3E3109530134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109530134&rft_id=info:pmid/&rfr_iscdi=true |