Plenoptic PNG: Real-Time Neural Radiance Fields in 150 KB
The goal of this paper is to encode a 3D scene into an extremely compact representation from 2D images and to enable its transmittance, decoding and rendering in real-time across various platforms. Despite the progress in NeRFs and Gaussian Splats, their large model size and specialized renderers ma...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jae Yong Lee Wu, Yuqun Zou, Chuhang Hoiem, Derek Wang, Shenlong |
description | The goal of this paper is to encode a 3D scene into an extremely compact representation from 2D images and to enable its transmittance, decoding and rendering in real-time across various platforms. Despite the progress in NeRFs and Gaussian Splats, their large model size and specialized renderers make it challenging to distribute free-viewpoint 3D content as easily as images. To address this, we have designed a novel 3D representation that encodes the plenoptic function into sinusoidal function indexed dense volumes. This approach facilitates feature sharing across different locations, improving compactness over traditional spatial voxels. The memory footprint of the dense 3D feature grid can be further reduced using spatial decomposition techniques. This design combines the strengths of spatial hashing functions and voxel decomposition, resulting in a model size as small as 150 KB for each 3D scene. Moreover, PPNG features a lightweight rendering pipeline with only 300 lines of code that decodes its representation into standard GL textures and fragment shaders. This enables real-time rendering using the traditional GL pipeline, ensuring universal compatibility and efficiency across various platforms without additional dependencies. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3109526975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109526975</sourcerecordid><originalsourceid>FETCH-proquest_journals_31095269753</originalsourceid><addsrcrecordid>eNqNytEKgjAUgOERBEn5Dge6Frazpq3LIgsCEfFehp5gsqY5ff-66AG6-i--f8UilFIkxwPihsUh9JxzTDNUSkZMl478MM62hbK4naAi45LavggKWibjoDKdNb4lyC25LoD1IBSHx3nH1k_jAsW_btk-v9aXezJOw3uhMDf9sEz-S40UXCtMdabkf9cHbCIz-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109526975</pqid></control><display><type>article</type><title>Plenoptic PNG: Real-Time Neural Radiance Fields in 150 KB</title><source>Free E- Journals</source><creator>Jae Yong Lee ; Wu, Yuqun ; Zou, Chuhang ; Hoiem, Derek ; Wang, Shenlong</creator><creatorcontrib>Jae Yong Lee ; Wu, Yuqun ; Zou, Chuhang ; Hoiem, Derek ; Wang, Shenlong</creatorcontrib><description>The goal of this paper is to encode a 3D scene into an extremely compact representation from 2D images and to enable its transmittance, decoding and rendering in real-time across various platforms. Despite the progress in NeRFs and Gaussian Splats, their large model size and specialized renderers make it challenging to distribute free-viewpoint 3D content as easily as images. To address this, we have designed a novel 3D representation that encodes the plenoptic function into sinusoidal function indexed dense volumes. This approach facilitates feature sharing across different locations, improving compactness over traditional spatial voxels. The memory footprint of the dense 3D feature grid can be further reduced using spatial decomposition techniques. This design combines the strengths of spatial hashing functions and voxel decomposition, resulting in a model size as small as 150 KB for each 3D scene. Moreover, PPNG features a lightweight rendering pipeline with only 300 lines of code that decodes its representation into standard GL textures and fragment shaders. This enables real-time rendering using the traditional GL pipeline, ensuring universal compatibility and efficiency across various platforms without additional dependencies.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decoding ; Decomposition ; Platforms ; Real time ; Rendering ; Representations ; Three dimensional models</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Jae Yong Lee</creatorcontrib><creatorcontrib>Wu, Yuqun</creatorcontrib><creatorcontrib>Zou, Chuhang</creatorcontrib><creatorcontrib>Hoiem, Derek</creatorcontrib><creatorcontrib>Wang, Shenlong</creatorcontrib><title>Plenoptic PNG: Real-Time Neural Radiance Fields in 150 KB</title><title>arXiv.org</title><description>The goal of this paper is to encode a 3D scene into an extremely compact representation from 2D images and to enable its transmittance, decoding and rendering in real-time across various platforms. Despite the progress in NeRFs and Gaussian Splats, their large model size and specialized renderers make it challenging to distribute free-viewpoint 3D content as easily as images. To address this, we have designed a novel 3D representation that encodes the plenoptic function into sinusoidal function indexed dense volumes. This approach facilitates feature sharing across different locations, improving compactness over traditional spatial voxels. The memory footprint of the dense 3D feature grid can be further reduced using spatial decomposition techniques. This design combines the strengths of spatial hashing functions and voxel decomposition, resulting in a model size as small as 150 KB for each 3D scene. Moreover, PPNG features a lightweight rendering pipeline with only 300 lines of code that decodes its representation into standard GL textures and fragment shaders. This enables real-time rendering using the traditional GL pipeline, ensuring universal compatibility and efficiency across various platforms without additional dependencies.</description><subject>Decoding</subject><subject>Decomposition</subject><subject>Platforms</subject><subject>Real time</subject><subject>Rendering</subject><subject>Representations</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNytEKgjAUgOERBEn5Dge6Frazpq3LIgsCEfFehp5gsqY5ff-66AG6-i--f8UilFIkxwPihsUh9JxzTDNUSkZMl478MM62hbK4naAi45LavggKWibjoDKdNb4lyC25LoD1IBSHx3nH1k_jAsW_btk-v9aXezJOw3uhMDf9sEz-S40UXCtMdabkf9cHbCIz-A</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>Jae Yong Lee</creator><creator>Wu, Yuqun</creator><creator>Zou, Chuhang</creator><creator>Hoiem, Derek</creator><creator>Wang, Shenlong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240924</creationdate><title>Plenoptic PNG: Real-Time Neural Radiance Fields in 150 KB</title><author>Jae Yong Lee ; Wu, Yuqun ; Zou, Chuhang ; Hoiem, Derek ; Wang, Shenlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31095269753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Decoding</topic><topic>Decomposition</topic><topic>Platforms</topic><topic>Real time</topic><topic>Rendering</topic><topic>Representations</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Jae Yong Lee</creatorcontrib><creatorcontrib>Wu, Yuqun</creatorcontrib><creatorcontrib>Zou, Chuhang</creatorcontrib><creatorcontrib>Hoiem, Derek</creatorcontrib><creatorcontrib>Wang, Shenlong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jae Yong Lee</au><au>Wu, Yuqun</au><au>Zou, Chuhang</au><au>Hoiem, Derek</au><au>Wang, Shenlong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Plenoptic PNG: Real-Time Neural Radiance Fields in 150 KB</atitle><jtitle>arXiv.org</jtitle><date>2024-09-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The goal of this paper is to encode a 3D scene into an extremely compact representation from 2D images and to enable its transmittance, decoding and rendering in real-time across various platforms. Despite the progress in NeRFs and Gaussian Splats, their large model size and specialized renderers make it challenging to distribute free-viewpoint 3D content as easily as images. To address this, we have designed a novel 3D representation that encodes the plenoptic function into sinusoidal function indexed dense volumes. This approach facilitates feature sharing across different locations, improving compactness over traditional spatial voxels. The memory footprint of the dense 3D feature grid can be further reduced using spatial decomposition techniques. This design combines the strengths of spatial hashing functions and voxel decomposition, resulting in a model size as small as 150 KB for each 3D scene. Moreover, PPNG features a lightweight rendering pipeline with only 300 lines of code that decodes its representation into standard GL textures and fragment shaders. This enables real-time rendering using the traditional GL pipeline, ensuring universal compatibility and efficiency across various platforms without additional dependencies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3109526975 |
source | Free E- Journals |
subjects | Decoding Decomposition Platforms Real time Rendering Representations Three dimensional models |
title | Plenoptic PNG: Real-Time Neural Radiance Fields in 150 KB |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Plenoptic%20PNG:%20Real-Time%20Neural%20Radiance%20Fields%20in%20150%20KB&rft.jtitle=arXiv.org&rft.au=Jae%20Yong%20Lee&rft.date=2024-09-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3109526975%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109526975&rft_id=info:pmid/&rfr_iscdi=true |