AsthmaBot: Multi-modal, Multi-Lingual Retrieval Augmented Generation For Asthma Patient Support

Asthma rates have risen globally, driven by environmental and lifestyle factors. Access to immediate medical care is limited, particularly in developing countries, necessitating automated support systems. Large Language Models like ChatGPT (Chat Generative Pre-trained Transformer) and Gemini have ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Bahaj, Adil, Ghogho, Mounir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bahaj, Adil
Ghogho, Mounir
description Asthma rates have risen globally, driven by environmental and lifestyle factors. Access to immediate medical care is limited, particularly in developing countries, necessitating automated support systems. Large Language Models like ChatGPT (Chat Generative Pre-trained Transformer) and Gemini have advanced natural language processing in general and question answering in particular, however, they are prone to producing factually incorrect responses (i.e. hallucinations). Retrieval-augmented generation systems, integrating curated documents, can improve large language models' performance and reduce the incidence of hallucination. We introduce AsthmaBot, a multi-lingual, multi-modal retrieval-augmented generation system for asthma support. Evaluation of an asthma-related frequently asked questions dataset shows AsthmaBot's efficacy. AsthmaBot has an added interactive and intuitive interface that integrates different data modalities (text, images, videos) to make it accessible to the larger public. AsthmaBot is available online via \url{asthmabot.datanets.org}.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3109525824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109525824</sourcerecordid><originalsourceid>FETCH-proquest_journals_31095258243</originalsourceid><addsrcrecordid>eNqNjEsKwjAYhIMgWLR3CLi1kCaNVndVrC4URN2XQH9rSprUPDy_BT2Aq3l8w4xQRBlLkzyjdIJi51pCCF2uKOcsQlXh_LMTW-M3-ByUl0lnaqEWv3CSuglC4St4K-E9uCI0HWgPNT6ABiu8NBqXxuLvEb4MzcDxLfS9sX6Gxg-hHMQ_naJ5ub_vjklvzSuA81VrgtUDqlhK1pzynGbsv9UHY9tELw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109525824</pqid></control><display><type>article</type><title>AsthmaBot: Multi-modal, Multi-Lingual Retrieval Augmented Generation For Asthma Patient Support</title><source>Free E- Journals</source><creator>Bahaj, Adil ; Ghogho, Mounir</creator><creatorcontrib>Bahaj, Adil ; Ghogho, Mounir</creatorcontrib><description>Asthma rates have risen globally, driven by environmental and lifestyle factors. Access to immediate medical care is limited, particularly in developing countries, necessitating automated support systems. Large Language Models like ChatGPT (Chat Generative Pre-trained Transformer) and Gemini have advanced natural language processing in general and question answering in particular, however, they are prone to producing factually incorrect responses (i.e. hallucinations). Retrieval-augmented generation systems, integrating curated documents, can improve large language models' performance and reduce the incidence of hallucination. We introduce AsthmaBot, a multi-lingual, multi-modal retrieval-augmented generation system for asthma support. Evaluation of an asthma-related frequently asked questions dataset shows AsthmaBot's efficacy. AsthmaBot has an added interactive and intuitive interface that integrates different data modalities (text, images, videos) to make it accessible to the larger public. AsthmaBot is available online via \url{asthmabot.datanets.org}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asthma ; Developing countries ; Large language models ; LDCs ; Natural language processing ; Questions ; Retrieval ; Support systems</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bahaj, Adil</creatorcontrib><creatorcontrib>Ghogho, Mounir</creatorcontrib><title>AsthmaBot: Multi-modal, Multi-Lingual Retrieval Augmented Generation For Asthma Patient Support</title><title>arXiv.org</title><description>Asthma rates have risen globally, driven by environmental and lifestyle factors. Access to immediate medical care is limited, particularly in developing countries, necessitating automated support systems. Large Language Models like ChatGPT (Chat Generative Pre-trained Transformer) and Gemini have advanced natural language processing in general and question answering in particular, however, they are prone to producing factually incorrect responses (i.e. hallucinations). Retrieval-augmented generation systems, integrating curated documents, can improve large language models' performance and reduce the incidence of hallucination. We introduce AsthmaBot, a multi-lingual, multi-modal retrieval-augmented generation system for asthma support. Evaluation of an asthma-related frequently asked questions dataset shows AsthmaBot's efficacy. AsthmaBot has an added interactive and intuitive interface that integrates different data modalities (text, images, videos) to make it accessible to the larger public. AsthmaBot is available online via \url{asthmabot.datanets.org}.</description><subject>Asthma</subject><subject>Developing countries</subject><subject>Large language models</subject><subject>LDCs</subject><subject>Natural language processing</subject><subject>Questions</subject><subject>Retrieval</subject><subject>Support systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEsKwjAYhIMgWLR3CLi1kCaNVndVrC4URN2XQH9rSprUPDy_BT2Aq3l8w4xQRBlLkzyjdIJi51pCCF2uKOcsQlXh_LMTW-M3-ByUl0lnaqEWv3CSuglC4St4K-E9uCI0HWgPNT6ABiu8NBqXxuLvEb4MzcDxLfS9sX6Gxg-hHMQ_naJ5ub_vjklvzSuA81VrgtUDqlhK1pzynGbsv9UHY9tELw</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>Bahaj, Adil</creator><creator>Ghogho, Mounir</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240924</creationdate><title>AsthmaBot: Multi-modal, Multi-Lingual Retrieval Augmented Generation For Asthma Patient Support</title><author>Bahaj, Adil ; Ghogho, Mounir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31095258243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asthma</topic><topic>Developing countries</topic><topic>Large language models</topic><topic>LDCs</topic><topic>Natural language processing</topic><topic>Questions</topic><topic>Retrieval</topic><topic>Support systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Bahaj, Adil</creatorcontrib><creatorcontrib>Ghogho, Mounir</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahaj, Adil</au><au>Ghogho, Mounir</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>AsthmaBot: Multi-modal, Multi-Lingual Retrieval Augmented Generation For Asthma Patient Support</atitle><jtitle>arXiv.org</jtitle><date>2024-09-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Asthma rates have risen globally, driven by environmental and lifestyle factors. Access to immediate medical care is limited, particularly in developing countries, necessitating automated support systems. Large Language Models like ChatGPT (Chat Generative Pre-trained Transformer) and Gemini have advanced natural language processing in general and question answering in particular, however, they are prone to producing factually incorrect responses (i.e. hallucinations). Retrieval-augmented generation systems, integrating curated documents, can improve large language models' performance and reduce the incidence of hallucination. We introduce AsthmaBot, a multi-lingual, multi-modal retrieval-augmented generation system for asthma support. Evaluation of an asthma-related frequently asked questions dataset shows AsthmaBot's efficacy. AsthmaBot has an added interactive and intuitive interface that integrates different data modalities (text, images, videos) to make it accessible to the larger public. AsthmaBot is available online via \url{asthmabot.datanets.org}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3109525824
source Free E- Journals
subjects Asthma
Developing countries
Large language models
LDCs
Natural language processing
Questions
Retrieval
Support systems
title AsthmaBot: Multi-modal, Multi-Lingual Retrieval Augmented Generation For Asthma Patient Support
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=AsthmaBot:%20Multi-modal,%20Multi-Lingual%20Retrieval%20Augmented%20Generation%20For%20Asthma%20Patient%20Support&rft.jtitle=arXiv.org&rft.au=Bahaj,%20Adil&rft.date=2024-09-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3109525824%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109525824&rft_id=info:pmid/&rfr_iscdi=true