Galerkin spectral estimation of vortex-dominated wake flows

We propose a technique for performing spectral (in time) analysis of spatially-resolved flowfield data, without needing any temporal resolution or information. This is achieved by combining projection-based reduced-order modeling with spectral proper orthogonal decomposition. In this method, space-o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and computational fluid dynamics 2024-12, Vol.38 (6), p.801-823
Hauptverfasser: Asztalos, Katherine J., Almashjary, Abdulrahman, Dawson, Scott T. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 823
container_issue 6
container_start_page 801
container_title Theoretical and computational fluid dynamics
container_volume 38
creator Asztalos, Katherine J.
Almashjary, Abdulrahman
Dawson, Scott T. M.
description We propose a technique for performing spectral (in time) analysis of spatially-resolved flowfield data, without needing any temporal resolution or information. This is achieved by combining projection-based reduced-order modeling with spectral proper orthogonal decomposition. In this method, space-only proper orthogonal decomposition is first performed on velocity data to identify a subspace onto which the known equations of motion are projected, following standard Galerkin projection techniques. The resulting reduced-order model is then utilized to generate time-resolved trajectories of data. Spectral proper orthogonal decomposition (SPOD) is then applied to this model-generated data to obtain a prediction of the spectral content of the system, while predicted SPOD modes can be obtained by lifting back to the original velocity field domain. This method is first demonstrated on a forced, randomly generated linear system, before being applied to study and reconstruct the spectral content of two-dimensional flow over two collinear flat plates perpendicular to an oncoming flow. At the range of Reynolds numbers considered, this configuration features an unsteady wake characterized by the formation and interaction of vortical structures in the wake. Depending on the Reynolds number, the wake can be periodic or feature broadband behavior, making it an insightful test case to assess the performance of the proposed method. In particular, we show that this method can accurately recover the spectral content of periodic, quasi-periodic, and broadband flows without utilizing any temporal information in the original data. To emphasize that temporal resolution is not required, we show that the predictive accuracy of the proposed method is robust to using temporally-subsampled data. Graphical abstract
doi_str_mv 10.1007/s00162-023-00670-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3109522709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109522709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5434884316cc1f793bd0a6a62fb0aaa5e38689df8209b33a5b0c3359be2dfb263</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEiXwAkyRmA3XvrETiwlVUJAqscBsOYmN0qZxsVMKb19DkNiY7nJ-7vkIuWRwzQDKmwjAJKfAkQLIEig7IjNWIKecCzgmM1AoaKFkcUrOYlwBAApZzcjtwvQ2rLshj1vbjMH0uY1jtzFj54fcu_zDh9F-0tZvusGMts33Zm1z1_t9PCcnzvTRXvzejLw-3L_MH-nyefE0v1vSBpkaqSiwqKoCmWwa5kqFdQtGGsldDcYYYbGSlWpdxUHViEbU0CAKVVveuppLzMjVlLsN_n2X3tMrvwtDqtTIQAnOyzQvI3xSNcHHGKzT25B2hC_NQH9D0hMknSDpH0iaJRNOppjEw5sNf9H_uA6byGlT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109522709</pqid></control><display><type>article</type><title>Galerkin spectral estimation of vortex-dominated wake flows</title><source>SpringerLink Journals - AutoHoldings</source><creator>Asztalos, Katherine J. ; Almashjary, Abdulrahman ; Dawson, Scott T. M.</creator><creatorcontrib>Asztalos, Katherine J. ; Almashjary, Abdulrahman ; Dawson, Scott T. M.</creatorcontrib><description>We propose a technique for performing spectral (in time) analysis of spatially-resolved flowfield data, without needing any temporal resolution or information. This is achieved by combining projection-based reduced-order modeling with spectral proper orthogonal decomposition. In this method, space-only proper orthogonal decomposition is first performed on velocity data to identify a subspace onto which the known equations of motion are projected, following standard Galerkin projection techniques. The resulting reduced-order model is then utilized to generate time-resolved trajectories of data. Spectral proper orthogonal decomposition (SPOD) is then applied to this model-generated data to obtain a prediction of the spectral content of the system, while predicted SPOD modes can be obtained by lifting back to the original velocity field domain. This method is first demonstrated on a forced, randomly generated linear system, before being applied to study and reconstruct the spectral content of two-dimensional flow over two collinear flat plates perpendicular to an oncoming flow. At the range of Reynolds numbers considered, this configuration features an unsteady wake characterized by the formation and interaction of vortical structures in the wake. Depending on the Reynolds number, the wake can be periodic or feature broadband behavior, making it an insightful test case to assess the performance of the proposed method. In particular, we show that this method can accurately recover the spectral content of periodic, quasi-periodic, and broadband flows without utilizing any temporal information in the original data. To emphasize that temporal resolution is not required, we show that the predictive accuracy of the proposed method is robust to using temporally-subsampled data. Graphical abstract</description><identifier>ISSN: 0935-4964</identifier><identifier>EISSN: 1432-2250</identifier><identifier>DOI: 10.1007/s00162-023-00670-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Broadband ; Classical and Continuum Physics ; Computational Science and Engineering ; Configuration management ; Decomposition ; Engineering ; Engineering Fluid Dynamics ; Equations of motion ; Flat plates ; Fluid dynamics ; Fluid flow ; Galerkin method ; Linear systems ; Original Article ; Performance assessment ; Predictions ; Proper Orthogonal Decomposition ; Reduced order models ; Reynolds number ; Temporal resolution ; Two dimensional flow ; Velocity ; Velocity distribution</subject><ispartof>Theoretical and computational fluid dynamics, 2024-12, Vol.38 (6), p.801-823</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5434884316cc1f793bd0a6a62fb0aaa5e38689df8209b33a5b0c3359be2dfb263</citedby><cites>FETCH-LOGICAL-c319t-5434884316cc1f793bd0a6a62fb0aaa5e38689df8209b33a5b0c3359be2dfb263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00162-023-00670-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00162-023-00670-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Asztalos, Katherine J.</creatorcontrib><creatorcontrib>Almashjary, Abdulrahman</creatorcontrib><creatorcontrib>Dawson, Scott T. M.</creatorcontrib><title>Galerkin spectral estimation of vortex-dominated wake flows</title><title>Theoretical and computational fluid dynamics</title><addtitle>Theor. Comput. Fluid Dyn</addtitle><description>We propose a technique for performing spectral (in time) analysis of spatially-resolved flowfield data, without needing any temporal resolution or information. This is achieved by combining projection-based reduced-order modeling with spectral proper orthogonal decomposition. In this method, space-only proper orthogonal decomposition is first performed on velocity data to identify a subspace onto which the known equations of motion are projected, following standard Galerkin projection techniques. The resulting reduced-order model is then utilized to generate time-resolved trajectories of data. Spectral proper orthogonal decomposition (SPOD) is then applied to this model-generated data to obtain a prediction of the spectral content of the system, while predicted SPOD modes can be obtained by lifting back to the original velocity field domain. This method is first demonstrated on a forced, randomly generated linear system, before being applied to study and reconstruct the spectral content of two-dimensional flow over two collinear flat plates perpendicular to an oncoming flow. At the range of Reynolds numbers considered, this configuration features an unsteady wake characterized by the formation and interaction of vortical structures in the wake. Depending on the Reynolds number, the wake can be periodic or feature broadband behavior, making it an insightful test case to assess the performance of the proposed method. In particular, we show that this method can accurately recover the spectral content of periodic, quasi-periodic, and broadband flows without utilizing any temporal information in the original data. To emphasize that temporal resolution is not required, we show that the predictive accuracy of the proposed method is robust to using temporally-subsampled data. Graphical abstract</description><subject>Broadband</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Configuration management</subject><subject>Decomposition</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Equations of motion</subject><subject>Flat plates</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Galerkin method</subject><subject>Linear systems</subject><subject>Original Article</subject><subject>Performance assessment</subject><subject>Predictions</subject><subject>Proper Orthogonal Decomposition</subject><subject>Reduced order models</subject><subject>Reynolds number</subject><subject>Temporal resolution</subject><subject>Two dimensional flow</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>0935-4964</issn><issn>1432-2250</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEiXwAkyRmA3XvrETiwlVUJAqscBsOYmN0qZxsVMKb19DkNiY7nJ-7vkIuWRwzQDKmwjAJKfAkQLIEig7IjNWIKecCzgmM1AoaKFkcUrOYlwBAApZzcjtwvQ2rLshj1vbjMH0uY1jtzFj54fcu_zDh9F-0tZvusGMts33Zm1z1_t9PCcnzvTRXvzejLw-3L_MH-nyefE0v1vSBpkaqSiwqKoCmWwa5kqFdQtGGsldDcYYYbGSlWpdxUHViEbU0CAKVVveuppLzMjVlLsN_n2X3tMrvwtDqtTIQAnOyzQvI3xSNcHHGKzT25B2hC_NQH9D0hMknSDpH0iaJRNOppjEw5sNf9H_uA6byGlT</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Asztalos, Katherine J.</creator><creator>Almashjary, Abdulrahman</creator><creator>Dawson, Scott T. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>U9A</scope></search><sort><creationdate>20241201</creationdate><title>Galerkin spectral estimation of vortex-dominated wake flows</title><author>Asztalos, Katherine J. ; Almashjary, Abdulrahman ; Dawson, Scott T. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5434884316cc1f793bd0a6a62fb0aaa5e38689df8209b33a5b0c3359be2dfb263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Broadband</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Configuration management</topic><topic>Decomposition</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Equations of motion</topic><topic>Flat plates</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Galerkin method</topic><topic>Linear systems</topic><topic>Original Article</topic><topic>Performance assessment</topic><topic>Predictions</topic><topic>Proper Orthogonal Decomposition</topic><topic>Reduced order models</topic><topic>Reynolds number</topic><topic>Temporal resolution</topic><topic>Two dimensional flow</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asztalos, Katherine J.</creatorcontrib><creatorcontrib>Almashjary, Abdulrahman</creatorcontrib><creatorcontrib>Dawson, Scott T. M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical and computational fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asztalos, Katherine J.</au><au>Almashjary, Abdulrahman</au><au>Dawson, Scott T. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galerkin spectral estimation of vortex-dominated wake flows</atitle><jtitle>Theoretical and computational fluid dynamics</jtitle><stitle>Theor. Comput. Fluid Dyn</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>38</volume><issue>6</issue><spage>801</spage><epage>823</epage><pages>801-823</pages><issn>0935-4964</issn><eissn>1432-2250</eissn><abstract>We propose a technique for performing spectral (in time) analysis of spatially-resolved flowfield data, without needing any temporal resolution or information. This is achieved by combining projection-based reduced-order modeling with spectral proper orthogonal decomposition. In this method, space-only proper orthogonal decomposition is first performed on velocity data to identify a subspace onto which the known equations of motion are projected, following standard Galerkin projection techniques. The resulting reduced-order model is then utilized to generate time-resolved trajectories of data. Spectral proper orthogonal decomposition (SPOD) is then applied to this model-generated data to obtain a prediction of the spectral content of the system, while predicted SPOD modes can be obtained by lifting back to the original velocity field domain. This method is first demonstrated on a forced, randomly generated linear system, before being applied to study and reconstruct the spectral content of two-dimensional flow over two collinear flat plates perpendicular to an oncoming flow. At the range of Reynolds numbers considered, this configuration features an unsteady wake characterized by the formation and interaction of vortical structures in the wake. Depending on the Reynolds number, the wake can be periodic or feature broadband behavior, making it an insightful test case to assess the performance of the proposed method. In particular, we show that this method can accurately recover the spectral content of periodic, quasi-periodic, and broadband flows without utilizing any temporal information in the original data. To emphasize that temporal resolution is not required, we show that the predictive accuracy of the proposed method is robust to using temporally-subsampled data. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00162-023-00670-1</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-4964
ispartof Theoretical and computational fluid dynamics, 2024-12, Vol.38 (6), p.801-823
issn 0935-4964
1432-2250
language eng
recordid cdi_proquest_journals_3109522709
source SpringerLink Journals - AutoHoldings
subjects Broadband
Classical and Continuum Physics
Computational Science and Engineering
Configuration management
Decomposition
Engineering
Engineering Fluid Dynamics
Equations of motion
Flat plates
Fluid dynamics
Fluid flow
Galerkin method
Linear systems
Original Article
Performance assessment
Predictions
Proper Orthogonal Decomposition
Reduced order models
Reynolds number
Temporal resolution
Two dimensional flow
Velocity
Velocity distribution
title Galerkin spectral estimation of vortex-dominated wake flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galerkin%20spectral%20estimation%20of%20vortex-dominated%20wake%20flows&rft.jtitle=Theoretical%20and%20computational%20fluid%20dynamics&rft.au=Asztalos,%20Katherine%20J.&rft.date=2024-12-01&rft.volume=38&rft.issue=6&rft.spage=801&rft.epage=823&rft.pages=801-823&rft.issn=0935-4964&rft.eissn=1432-2250&rft_id=info:doi/10.1007/s00162-023-00670-1&rft_dat=%3Cproquest_cross%3E3109522709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109522709&rft_id=info:pmid/&rfr_iscdi=true