Small intestine submucosa decorated 3D printed scaffold accelerated diabetic bone regeneration by ameliorating the microenvironment
The 3D printed scaffolds constructed from polymers have shown significant potential in the field of bone defect regeneration. However, the efficacy of these scaffolds can be markedly reduced in certain pathological conditions like diabetes, where an altered inflammatory microenvironment and diminish...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2024-09, Vol.12 (37), p.9375-9389 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9389 |
---|---|
container_issue | 37 |
container_start_page | 9375 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 12 |
creator | Tan, Jie Chen, Zecai Xu, Zhen Huang, Yafang Qin, Lei Long, Yufeng Wu, Jiayi Yang, Hantao Chen, Xuandu Yi, Weihong Hang, Ruiqiang Guan, Min Wang, Huaiyu Gao, Ang Yang, Dazhi |
description | The 3D printed scaffolds constructed from polymers have shown significant potential in the field of bone defect regeneration. However, the efficacy of these scaffolds can be markedly reduced in certain pathological conditions like diabetes, where an altered inflammatory microenvironment and diminished small blood vessels complicate the integration of these polymers with the host tissue. In this study, the bioactivity of a 3D-printed poly(lactide-
co
-glycolide) (PLGA) scaffold is enhanced through the integration of hydroxyapatite (HA), icariin (ICA), and small intestine submucosa (SIS), a form of decellularized extracellular matrix (dECM). The decoration of SIS on the 3D-printed PLGA/HA/ICA scaffold not only improves the mechanical and degradative performance, but also extends the release of ICA from the scaffold. Both
in vitro
and
in vivo
studies demonstrate that this functionalized scaffold mitigates the persistent inflammatory conditions characteristic of diabetic bone defects through inducing macrophages towards the M2 phenotype. Additionally, the scaffold promotes angiogenesis by enhancing the migration and tube formation of vascular cells. Furthermore, the synergistic effects of ICA and SIS with the HA scaffolds contribute to the superior osteogenic induction capabilities. This functionalization approach holds significant promise in advancing the treatment of bone defects within the diabetic population, paving a step forward in the application of polymer-based 3D printing technologies in regenerative medicine.
3D-printed PLGA/hydroxyapatite/icariin scaffolds with small intestine submucosa coating offer immunoregulatory abilities, enhance angiogenesis and osteogenesis, and show promise for treating bone defects in diabetic patients. |
doi_str_mv | 10.1039/d4tb00772g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3109169951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109169951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-c7a1869de6f1bc681333ac061e7aac8f21bd8e2e928cb4f367e2c6bf39cd98d93</originalsourceid><addsrcrecordid>eNpdkd1LHDEUxYNUXNF96bsl0BcRVvMxk0ke21VXQfChFvo25OPOGplJbDJT8Nl_3Kxrt9C83MD5cbjnHoQ-U3JOCVcXrhoNIU3D1nvokJGaLJqayk-7P_k1Q_Ocn0h5kgrJqwM044pKVTFxiF5_DLrvsQ8j5NEHwHkyw2Rj1tiBjUmP4DC_xM9pgzicre662DusrYUetrrz2sDoLTaxOCRYQ9goPgZsXrAeoPcbJx_WeHwEPHibIoQ_PsUwQBiP0X6n-wzzj3mEfl5fPSxvFnf3q9vlt7uFZYKNC9toKoVyIDpqrJCUc64tERQara3sGDVOAgPFpDVVx0UDzArTcWWdkk7xI3S69X1O8fdU8raDzyVFrwPEKbecqKZSdVXzgn79D32KUwplu5ZToqhQqqaFOttSJU_OCbq2nGnQ6aWlpN20015WD9_f21kV-MuHZbkwuB36t4sCnGyBlO1O_VcvfwONoJbZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109169951</pqid></control><display><type>article</type><title>Small intestine submucosa decorated 3D printed scaffold accelerated diabetic bone regeneration by ameliorating the microenvironment</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Tan, Jie ; Chen, Zecai ; Xu, Zhen ; Huang, Yafang ; Qin, Lei ; Long, Yufeng ; Wu, Jiayi ; Yang, Hantao ; Chen, Xuandu ; Yi, Weihong ; Hang, Ruiqiang ; Guan, Min ; Wang, Huaiyu ; Gao, Ang ; Yang, Dazhi</creator><creatorcontrib>Tan, Jie ; Chen, Zecai ; Xu, Zhen ; Huang, Yafang ; Qin, Lei ; Long, Yufeng ; Wu, Jiayi ; Yang, Hantao ; Chen, Xuandu ; Yi, Weihong ; Hang, Ruiqiang ; Guan, Min ; Wang, Huaiyu ; Gao, Ang ; Yang, Dazhi</creatorcontrib><description>The 3D printed scaffolds constructed from polymers have shown significant potential in the field of bone defect regeneration. However, the efficacy of these scaffolds can be markedly reduced in certain pathological conditions like diabetes, where an altered inflammatory microenvironment and diminished small blood vessels complicate the integration of these polymers with the host tissue. In this study, the bioactivity of a 3D-printed poly(lactide-
co
-glycolide) (PLGA) scaffold is enhanced through the integration of hydroxyapatite (HA), icariin (ICA), and small intestine submucosa (SIS), a form of decellularized extracellular matrix (dECM). The decoration of SIS on the 3D-printed PLGA/HA/ICA scaffold not only improves the mechanical and degradative performance, but also extends the release of ICA from the scaffold. Both
in vitro
and
in vivo
studies demonstrate that this functionalized scaffold mitigates the persistent inflammatory conditions characteristic of diabetic bone defects through inducing macrophages towards the M2 phenotype. Additionally, the scaffold promotes angiogenesis by enhancing the migration and tube formation of vascular cells. Furthermore, the synergistic effects of ICA and SIS with the HA scaffolds contribute to the superior osteogenic induction capabilities. This functionalization approach holds significant promise in advancing the treatment of bone defects within the diabetic population, paving a step forward in the application of polymer-based 3D printing technologies in regenerative medicine.
3D-printed PLGA/hydroxyapatite/icariin scaffolds with small intestine submucosa coating offer immunoregulatory abilities, enhance angiogenesis and osteogenesis, and show promise for treating bone defects in diabetic patients.</description><identifier>ISSN: 2050-750X</identifier><identifier>ISSN: 2050-7518</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d4tb00772g</identifier><identifier>PMID: 39189426</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Angiogenesis ; Biological activity ; Blood vessels ; Bone growth ; Defects ; Diabetes ; Diabetes mellitus ; Extracellular matrix ; Hydroxyapatite ; In vivo methods and tests ; Inflammation ; Intestine ; Leukocyte migration ; Macrophages ; Mechanical properties ; Performance degradation ; Phenotypes ; Poly(lactide-co-glycolide) ; Polylactide-co-glycolide ; Polymers ; Regeneration ; Regeneration (physiology) ; Regenerative medicine ; Scaffolds ; Small intestine ; Synergistic effect ; Three dimensional printing ; Tissue engineering</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2024-09, Vol.12 (37), p.9375-9389</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-c7a1869de6f1bc681333ac061e7aac8f21bd8e2e928cb4f367e2c6bf39cd98d93</cites><orcidid>0000-0003-3851-8553 ; 0000-0002-4817-4267 ; 0000-0002-7189-9944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39189426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Jie</creatorcontrib><creatorcontrib>Chen, Zecai</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><creatorcontrib>Huang, Yafang</creatorcontrib><creatorcontrib>Qin, Lei</creatorcontrib><creatorcontrib>Long, Yufeng</creatorcontrib><creatorcontrib>Wu, Jiayi</creatorcontrib><creatorcontrib>Yang, Hantao</creatorcontrib><creatorcontrib>Chen, Xuandu</creatorcontrib><creatorcontrib>Yi, Weihong</creatorcontrib><creatorcontrib>Hang, Ruiqiang</creatorcontrib><creatorcontrib>Guan, Min</creatorcontrib><creatorcontrib>Wang, Huaiyu</creatorcontrib><creatorcontrib>Gao, Ang</creatorcontrib><creatorcontrib>Yang, Dazhi</creatorcontrib><title>Small intestine submucosa decorated 3D printed scaffold accelerated diabetic bone regeneration by ameliorating the microenvironment</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>The 3D printed scaffolds constructed from polymers have shown significant potential in the field of bone defect regeneration. However, the efficacy of these scaffolds can be markedly reduced in certain pathological conditions like diabetes, where an altered inflammatory microenvironment and diminished small blood vessels complicate the integration of these polymers with the host tissue. In this study, the bioactivity of a 3D-printed poly(lactide-
co
-glycolide) (PLGA) scaffold is enhanced through the integration of hydroxyapatite (HA), icariin (ICA), and small intestine submucosa (SIS), a form of decellularized extracellular matrix (dECM). The decoration of SIS on the 3D-printed PLGA/HA/ICA scaffold not only improves the mechanical and degradative performance, but also extends the release of ICA from the scaffold. Both
in vitro
and
in vivo
studies demonstrate that this functionalized scaffold mitigates the persistent inflammatory conditions characteristic of diabetic bone defects through inducing macrophages towards the M2 phenotype. Additionally, the scaffold promotes angiogenesis by enhancing the migration and tube formation of vascular cells. Furthermore, the synergistic effects of ICA and SIS with the HA scaffolds contribute to the superior osteogenic induction capabilities. This functionalization approach holds significant promise in advancing the treatment of bone defects within the diabetic population, paving a step forward in the application of polymer-based 3D printing technologies in regenerative medicine.
3D-printed PLGA/hydroxyapatite/icariin scaffolds with small intestine submucosa coating offer immunoregulatory abilities, enhance angiogenesis and osteogenesis, and show promise for treating bone defects in diabetic patients.</description><subject>Angiogenesis</subject><subject>Biological activity</subject><subject>Blood vessels</subject><subject>Bone growth</subject><subject>Defects</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Extracellular matrix</subject><subject>Hydroxyapatite</subject><subject>In vivo methods and tests</subject><subject>Inflammation</subject><subject>Intestine</subject><subject>Leukocyte migration</subject><subject>Macrophages</subject><subject>Mechanical properties</subject><subject>Performance degradation</subject><subject>Phenotypes</subject><subject>Poly(lactide-co-glycolide)</subject><subject>Polylactide-co-glycolide</subject><subject>Polymers</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Regenerative medicine</subject><subject>Scaffolds</subject><subject>Small intestine</subject><subject>Synergistic effect</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>2050-750X</issn><issn>2050-7518</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkd1LHDEUxYNUXNF96bsl0BcRVvMxk0ke21VXQfChFvo25OPOGplJbDJT8Nl_3Kxrt9C83MD5cbjnHoQ-U3JOCVcXrhoNIU3D1nvokJGaLJqayk-7P_k1Q_Ocn0h5kgrJqwM044pKVTFxiF5_DLrvsQ8j5NEHwHkyw2Rj1tiBjUmP4DC_xM9pgzicre662DusrYUetrrz2sDoLTaxOCRYQ9goPgZsXrAeoPcbJx_WeHwEPHibIoQ_PsUwQBiP0X6n-wzzj3mEfl5fPSxvFnf3q9vlt7uFZYKNC9toKoVyIDpqrJCUc64tERQara3sGDVOAgPFpDVVx0UDzArTcWWdkk7xI3S69X1O8fdU8raDzyVFrwPEKbecqKZSdVXzgn79D32KUwplu5ZToqhQqqaFOttSJU_OCbq2nGnQ6aWlpN20015WD9_f21kV-MuHZbkwuB36t4sCnGyBlO1O_VcvfwONoJbZ</recordid><startdate>20240925</startdate><enddate>20240925</enddate><creator>Tan, Jie</creator><creator>Chen, Zecai</creator><creator>Xu, Zhen</creator><creator>Huang, Yafang</creator><creator>Qin, Lei</creator><creator>Long, Yufeng</creator><creator>Wu, Jiayi</creator><creator>Yang, Hantao</creator><creator>Chen, Xuandu</creator><creator>Yi, Weihong</creator><creator>Hang, Ruiqiang</creator><creator>Guan, Min</creator><creator>Wang, Huaiyu</creator><creator>Gao, Ang</creator><creator>Yang, Dazhi</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3851-8553</orcidid><orcidid>https://orcid.org/0000-0002-4817-4267</orcidid><orcidid>https://orcid.org/0000-0002-7189-9944</orcidid></search><sort><creationdate>20240925</creationdate><title>Small intestine submucosa decorated 3D printed scaffold accelerated diabetic bone regeneration by ameliorating the microenvironment</title><author>Tan, Jie ; Chen, Zecai ; Xu, Zhen ; Huang, Yafang ; Qin, Lei ; Long, Yufeng ; Wu, Jiayi ; Yang, Hantao ; Chen, Xuandu ; Yi, Weihong ; Hang, Ruiqiang ; Guan, Min ; Wang, Huaiyu ; Gao, Ang ; Yang, Dazhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-c7a1869de6f1bc681333ac061e7aac8f21bd8e2e928cb4f367e2c6bf39cd98d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angiogenesis</topic><topic>Biological activity</topic><topic>Blood vessels</topic><topic>Bone growth</topic><topic>Defects</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Extracellular matrix</topic><topic>Hydroxyapatite</topic><topic>In vivo methods and tests</topic><topic>Inflammation</topic><topic>Intestine</topic><topic>Leukocyte migration</topic><topic>Macrophages</topic><topic>Mechanical properties</topic><topic>Performance degradation</topic><topic>Phenotypes</topic><topic>Poly(lactide-co-glycolide)</topic><topic>Polylactide-co-glycolide</topic><topic>Polymers</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Regenerative medicine</topic><topic>Scaffolds</topic><topic>Small intestine</topic><topic>Synergistic effect</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Jie</creatorcontrib><creatorcontrib>Chen, Zecai</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><creatorcontrib>Huang, Yafang</creatorcontrib><creatorcontrib>Qin, Lei</creatorcontrib><creatorcontrib>Long, Yufeng</creatorcontrib><creatorcontrib>Wu, Jiayi</creatorcontrib><creatorcontrib>Yang, Hantao</creatorcontrib><creatorcontrib>Chen, Xuandu</creatorcontrib><creatorcontrib>Yi, Weihong</creatorcontrib><creatorcontrib>Hang, Ruiqiang</creatorcontrib><creatorcontrib>Guan, Min</creatorcontrib><creatorcontrib>Wang, Huaiyu</creatorcontrib><creatorcontrib>Gao, Ang</creatorcontrib><creatorcontrib>Yang, Dazhi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Jie</au><au>Chen, Zecai</au><au>Xu, Zhen</au><au>Huang, Yafang</au><au>Qin, Lei</au><au>Long, Yufeng</au><au>Wu, Jiayi</au><au>Yang, Hantao</au><au>Chen, Xuandu</au><au>Yi, Weihong</au><au>Hang, Ruiqiang</au><au>Guan, Min</au><au>Wang, Huaiyu</au><au>Gao, Ang</au><au>Yang, Dazhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small intestine submucosa decorated 3D printed scaffold accelerated diabetic bone regeneration by ameliorating the microenvironment</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2024-09-25</date><risdate>2024</risdate><volume>12</volume><issue>37</issue><spage>9375</spage><epage>9389</epage><pages>9375-9389</pages><issn>2050-750X</issn><issn>2050-7518</issn><eissn>2050-7518</eissn><abstract>The 3D printed scaffolds constructed from polymers have shown significant potential in the field of bone defect regeneration. However, the efficacy of these scaffolds can be markedly reduced in certain pathological conditions like diabetes, where an altered inflammatory microenvironment and diminished small blood vessels complicate the integration of these polymers with the host tissue. In this study, the bioactivity of a 3D-printed poly(lactide-
co
-glycolide) (PLGA) scaffold is enhanced through the integration of hydroxyapatite (HA), icariin (ICA), and small intestine submucosa (SIS), a form of decellularized extracellular matrix (dECM). The decoration of SIS on the 3D-printed PLGA/HA/ICA scaffold not only improves the mechanical and degradative performance, but also extends the release of ICA from the scaffold. Both
in vitro
and
in vivo
studies demonstrate that this functionalized scaffold mitigates the persistent inflammatory conditions characteristic of diabetic bone defects through inducing macrophages towards the M2 phenotype. Additionally, the scaffold promotes angiogenesis by enhancing the migration and tube formation of vascular cells. Furthermore, the synergistic effects of ICA and SIS with the HA scaffolds contribute to the superior osteogenic induction capabilities. This functionalization approach holds significant promise in advancing the treatment of bone defects within the diabetic population, paving a step forward in the application of polymer-based 3D printing technologies in regenerative medicine.
3D-printed PLGA/hydroxyapatite/icariin scaffolds with small intestine submucosa coating offer immunoregulatory abilities, enhance angiogenesis and osteogenesis, and show promise for treating bone defects in diabetic patients.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39189426</pmid><doi>10.1039/d4tb00772g</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3851-8553</orcidid><orcidid>https://orcid.org/0000-0002-4817-4267</orcidid><orcidid>https://orcid.org/0000-0002-7189-9944</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2024-09, Vol.12 (37), p.9375-9389 |
issn | 2050-750X 2050-7518 2050-7518 |
language | eng |
recordid | cdi_proquest_journals_3109169951 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Angiogenesis Biological activity Blood vessels Bone growth Defects Diabetes Diabetes mellitus Extracellular matrix Hydroxyapatite In vivo methods and tests Inflammation Intestine Leukocyte migration Macrophages Mechanical properties Performance degradation Phenotypes Poly(lactide-co-glycolide) Polylactide-co-glycolide Polymers Regeneration Regeneration (physiology) Regenerative medicine Scaffolds Small intestine Synergistic effect Three dimensional printing Tissue engineering |
title | Small intestine submucosa decorated 3D printed scaffold accelerated diabetic bone regeneration by ameliorating the microenvironment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20intestine%20submucosa%20decorated%203D%20printed%20scaffold%20accelerated%20diabetic%20bone%20regeneration%20by%20ameliorating%20the%20microenvironment&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Tan,%20Jie&rft.date=2024-09-25&rft.volume=12&rft.issue=37&rft.spage=9375&rft.epage=9389&rft.pages=9375-9389&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d4tb00772g&rft_dat=%3Cproquest_cross%3E3109169951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109169951&rft_id=info:pmid/39189426&rfr_iscdi=true |