Scideator: Human-LLM Scientific Idea Generation Grounded in Research-Paper Facet Recombination
The scientific ideation process often involves blending salient aspects of existing papers to create new ideas. To see if large language models (LLMs) can assist this process, we contribute Scideator, a novel mixed-initiative tool for scientific ideation. Starting from a user-provided set of papers,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Radensky, Marissa Simra Shahid Fok, Raymond Pao Siangliulue Hope, Tom Weld, Daniel S |
description | The scientific ideation process often involves blending salient aspects of existing papers to create new ideas. To see if large language models (LLMs) can assist this process, we contribute Scideator, a novel mixed-initiative tool for scientific ideation. Starting from a user-provided set of papers, Scideator extracts key facets (purposes, mechanisms, and evaluations) from these and relevant papers, allowing users to explore the idea space by interactively recombining facets to synthesize inventive ideas. Scideator also helps users to gauge idea novelty by searching the literature for potential overlaps and showing automated novelty assessments and explanations. To support these tasks, Scideator introduces four LLM-powered retrieval-augmented generation (RAG) modules: Analogous Paper Facet Finder, Faceted Idea Generator, Idea Novelty Checker, and Idea Novelty Iterator. In a within-subjects user study, 19 computer-science researchers identified significantly more interesting ideas using Scideator compared to a strong baseline combining a scientific search engine with LLM interaction. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3108870878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108870878</sourcerecordid><originalsourceid>FETCH-proquest_journals_31088708783</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_DHoezC1z9BqpgUFUz8maV5rkZtv8_yT6gJ4OnHNmKGKcJ0RsGFug2PuOUsq2GUtTHqH7VekGZLBuh8uxl4ZU1QlPEkzQrVb4OFVcgAEng7YGF86OpoEGa4Mv4EE69SRnOYDDuVQQJqls_9Dmu6_QvJUvD_GPS7TOD7d9SQZn3yP4UHd2dGZKNU-oEBkVmeD_XR_IM0NY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108870878</pqid></control><display><type>article</type><title>Scideator: Human-LLM Scientific Idea Generation Grounded in Research-Paper Facet Recombination</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Radensky, Marissa ; Simra Shahid ; Fok, Raymond ; Pao Siangliulue ; Hope, Tom ; Weld, Daniel S</creator><creatorcontrib>Radensky, Marissa ; Simra Shahid ; Fok, Raymond ; Pao Siangliulue ; Hope, Tom ; Weld, Daniel S</creatorcontrib><description>The scientific ideation process often involves blending salient aspects of existing papers to create new ideas. To see if large language models (LLMs) can assist this process, we contribute Scideator, a novel mixed-initiative tool for scientific ideation. Starting from a user-provided set of papers, Scideator extracts key facets (purposes, mechanisms, and evaluations) from these and relevant papers, allowing users to explore the idea space by interactively recombining facets to synthesize inventive ideas. Scideator also helps users to gauge idea novelty by searching the literature for potential overlaps and showing automated novelty assessments and explanations. To support these tasks, Scideator introduces four LLM-powered retrieval-augmented generation (RAG) modules: Analogous Paper Facet Finder, Faceted Idea Generator, Idea Novelty Checker, and Idea Novelty Iterator. In a within-subjects user study, 19 computer-science researchers identified significantly more interesting ideas using Scideator compared to a strong baseline combining a scientific search engine with LLM interaction.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Large language models ; Search engines</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Radensky, Marissa</creatorcontrib><creatorcontrib>Simra Shahid</creatorcontrib><creatorcontrib>Fok, Raymond</creatorcontrib><creatorcontrib>Pao Siangliulue</creatorcontrib><creatorcontrib>Hope, Tom</creatorcontrib><creatorcontrib>Weld, Daniel S</creatorcontrib><title>Scideator: Human-LLM Scientific Idea Generation Grounded in Research-Paper Facet Recombination</title><title>arXiv.org</title><description>The scientific ideation process often involves blending salient aspects of existing papers to create new ideas. To see if large language models (LLMs) can assist this process, we contribute Scideator, a novel mixed-initiative tool for scientific ideation. Starting from a user-provided set of papers, Scideator extracts key facets (purposes, mechanisms, and evaluations) from these and relevant papers, allowing users to explore the idea space by interactively recombining facets to synthesize inventive ideas. Scideator also helps users to gauge idea novelty by searching the literature for potential overlaps and showing automated novelty assessments and explanations. To support these tasks, Scideator introduces four LLM-powered retrieval-augmented generation (RAG) modules: Analogous Paper Facet Finder, Faceted Idea Generator, Idea Novelty Checker, and Idea Novelty Iterator. In a within-subjects user study, 19 computer-science researchers identified significantly more interesting ideas using Scideator compared to a strong baseline combining a scientific search engine with LLM interaction.</description><subject>Large language models</subject><subject>Search engines</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNitEKgjAUQEcQJOU_DHoezC1z9BqpgUFUz8maV5rkZtv8_yT6gJ4OnHNmKGKcJ0RsGFug2PuOUsq2GUtTHqH7VekGZLBuh8uxl4ZU1QlPEkzQrVb4OFVcgAEng7YGF86OpoEGa4Mv4EE69SRnOYDDuVQQJqls_9Dmu6_QvJUvD_GPS7TOD7d9SQZn3yP4UHd2dGZKNU-oEBkVmeD_XR_IM0NY</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Radensky, Marissa</creator><creator>Simra Shahid</creator><creator>Fok, Raymond</creator><creator>Pao Siangliulue</creator><creator>Hope, Tom</creator><creator>Weld, Daniel S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241118</creationdate><title>Scideator: Human-LLM Scientific Idea Generation Grounded in Research-Paper Facet Recombination</title><author>Radensky, Marissa ; Simra Shahid ; Fok, Raymond ; Pao Siangliulue ; Hope, Tom ; Weld, Daniel S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31088708783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Large language models</topic><topic>Search engines</topic><toplevel>online_resources</toplevel><creatorcontrib>Radensky, Marissa</creatorcontrib><creatorcontrib>Simra Shahid</creatorcontrib><creatorcontrib>Fok, Raymond</creatorcontrib><creatorcontrib>Pao Siangliulue</creatorcontrib><creatorcontrib>Hope, Tom</creatorcontrib><creatorcontrib>Weld, Daniel S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radensky, Marissa</au><au>Simra Shahid</au><au>Fok, Raymond</au><au>Pao Siangliulue</au><au>Hope, Tom</au><au>Weld, Daniel S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Scideator: Human-LLM Scientific Idea Generation Grounded in Research-Paper Facet Recombination</atitle><jtitle>arXiv.org</jtitle><date>2024-11-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The scientific ideation process often involves blending salient aspects of existing papers to create new ideas. To see if large language models (LLMs) can assist this process, we contribute Scideator, a novel mixed-initiative tool for scientific ideation. Starting from a user-provided set of papers, Scideator extracts key facets (purposes, mechanisms, and evaluations) from these and relevant papers, allowing users to explore the idea space by interactively recombining facets to synthesize inventive ideas. Scideator also helps users to gauge idea novelty by searching the literature for potential overlaps and showing automated novelty assessments and explanations. To support these tasks, Scideator introduces four LLM-powered retrieval-augmented generation (RAG) modules: Analogous Paper Facet Finder, Faceted Idea Generator, Idea Novelty Checker, and Idea Novelty Iterator. In a within-subjects user study, 19 computer-science researchers identified significantly more interesting ideas using Scideator compared to a strong baseline combining a scientific search engine with LLM interaction.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3108870878 |
source | Open Access: Freely Accessible Journals by multiple vendors |
subjects | Large language models Search engines |
title | Scideator: Human-LLM Scientific Idea Generation Grounded in Research-Paper Facet Recombination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A20%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Scideator:%20Human-LLM%20Scientific%20Idea%20Generation%20Grounded%20in%20Research-Paper%20Facet%20Recombination&rft.jtitle=arXiv.org&rft.au=Radensky,%20Marissa&rft.date=2024-11-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3108870878%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108870878&rft_id=info:pmid/&rfr_iscdi=true |