Personalized Route Recommendation Based on User Habits for Vehicle Navigation

Navigation route recommendation is one of the important functions of intelligent transportation. However, users frequently deviate from recommended routes for various reasons, with personalization being a key problem in the field of research. This paper introduces a personalized route recommendation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Huang, Yinuo, Jin, Xin, Fan, Miao, Yang, Xunwei, Jiang, Fangliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Huang, Yinuo
Jin, Xin
Fan, Miao
Yang, Xunwei
Jiang, Fangliang
description Navigation route recommendation is one of the important functions of intelligent transportation. However, users frequently deviate from recommended routes for various reasons, with personalization being a key problem in the field of research. This paper introduces a personalized route recommendation method based on user historical navigation data. First, we formulate route sorting as a pointwise problem based on a large set of pertinent features. Second, we construct route features and user profiles to establish a comprehensive feature dataset. Furthermore, we propose a Deep-Cross-Recurrent (DCR) learning model aimed at learning route sorting scores and offering customized route recommendations. This approach effectively captures recommended navigation routes and user preferences by integrating DCN-v2 and LSTM. In offline evaluations, our method compared with the minimum ETA (estimated time of arrival), LightGBM, and DCN-v2 indicated 8.72%, 2.19%, and 0.9% reduction in the mean inconsistency rate respectively, demonstrating significant improvements in recommendation accuracy.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3108869940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108869940</sourcerecordid><originalsourceid>FETCH-proquest_journals_31088699403</originalsourceid><addsrcrecordid>eNqNjdEKgjAYRkcQJOU7DLoW5qY2b4vCmyKkupWlvzVRV_tnFz19Ej1AV9-Bc-CbEI8LEQYy4nxGfMSGMcaTFY9j4ZH9ESyaXrX6DRXNzeCA5lCaroO-Uk6bnq4VjmqEM4Klmbpqh7Q2ll7grssW6EG99O3bLsi0Vi2C_9s5We62p00WPKx5DoCuaMxgxzcsRMikTNI0YuK_6gOUlT3T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108869940</pqid></control><display><type>article</type><title>Personalized Route Recommendation Based on User Habits for Vehicle Navigation</title><source>Free E- Journals</source><creator>Huang, Yinuo ; Jin, Xin ; Fan, Miao ; Yang, Xunwei ; Jiang, Fangliang</creator><creatorcontrib>Huang, Yinuo ; Jin, Xin ; Fan, Miao ; Yang, Xunwei ; Jiang, Fangliang</creatorcontrib><description>Navigation route recommendation is one of the important functions of intelligent transportation. However, users frequently deviate from recommended routes for various reasons, with personalization being a key problem in the field of research. This paper introduces a personalized route recommendation method based on user historical navigation data. First, we formulate route sorting as a pointwise problem based on a large set of pertinent features. Second, we construct route features and user profiles to establish a comprehensive feature dataset. Furthermore, we propose a Deep-Cross-Recurrent (DCR) learning model aimed at learning route sorting scores and offering customized route recommendations. This approach effectively captures recommended navigation routes and user preferences by integrating DCN-v2 and LSTM. In offline evaluations, our method compared with the minimum ETA (estimated time of arrival), LightGBM, and DCN-v2 indicated 8.72%, 2.19%, and 0.9% reduction in the mean inconsistency rate respectively, demonstrating significant improvements in recommendation accuracy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Customization ; Depth profiling ; Learning ; Navigation</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Huang, Yinuo</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Fan, Miao</creatorcontrib><creatorcontrib>Yang, Xunwei</creatorcontrib><creatorcontrib>Jiang, Fangliang</creatorcontrib><title>Personalized Route Recommendation Based on User Habits for Vehicle Navigation</title><title>arXiv.org</title><description>Navigation route recommendation is one of the important functions of intelligent transportation. However, users frequently deviate from recommended routes for various reasons, with personalization being a key problem in the field of research. This paper introduces a personalized route recommendation method based on user historical navigation data. First, we formulate route sorting as a pointwise problem based on a large set of pertinent features. Second, we construct route features and user profiles to establish a comprehensive feature dataset. Furthermore, we propose a Deep-Cross-Recurrent (DCR) learning model aimed at learning route sorting scores and offering customized route recommendations. This approach effectively captures recommended navigation routes and user preferences by integrating DCN-v2 and LSTM. In offline evaluations, our method compared with the minimum ETA (estimated time of arrival), LightGBM, and DCN-v2 indicated 8.72%, 2.19%, and 0.9% reduction in the mean inconsistency rate respectively, demonstrating significant improvements in recommendation accuracy.</description><subject>Customization</subject><subject>Depth profiling</subject><subject>Learning</subject><subject>Navigation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjdEKgjAYRkcQJOU7DLoW5qY2b4vCmyKkupWlvzVRV_tnFz19Ej1AV9-Bc-CbEI8LEQYy4nxGfMSGMcaTFY9j4ZH9ESyaXrX6DRXNzeCA5lCaroO-Uk6bnq4VjmqEM4Klmbpqh7Q2ll7grssW6EG99O3bLsi0Vi2C_9s5We62p00WPKx5DoCuaMxgxzcsRMikTNI0YuK_6gOUlT3T</recordid><startdate>20240921</startdate><enddate>20240921</enddate><creator>Huang, Yinuo</creator><creator>Jin, Xin</creator><creator>Fan, Miao</creator><creator>Yang, Xunwei</creator><creator>Jiang, Fangliang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240921</creationdate><title>Personalized Route Recommendation Based on User Habits for Vehicle Navigation</title><author>Huang, Yinuo ; Jin, Xin ; Fan, Miao ; Yang, Xunwei ; Jiang, Fangliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31088699403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Customization</topic><topic>Depth profiling</topic><topic>Learning</topic><topic>Navigation</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yinuo</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Fan, Miao</creatorcontrib><creatorcontrib>Yang, Xunwei</creatorcontrib><creatorcontrib>Jiang, Fangliang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yinuo</au><au>Jin, Xin</au><au>Fan, Miao</au><au>Yang, Xunwei</au><au>Jiang, Fangliang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Personalized Route Recommendation Based on User Habits for Vehicle Navigation</atitle><jtitle>arXiv.org</jtitle><date>2024-09-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Navigation route recommendation is one of the important functions of intelligent transportation. However, users frequently deviate from recommended routes for various reasons, with personalization being a key problem in the field of research. This paper introduces a personalized route recommendation method based on user historical navigation data. First, we formulate route sorting as a pointwise problem based on a large set of pertinent features. Second, we construct route features and user profiles to establish a comprehensive feature dataset. Furthermore, we propose a Deep-Cross-Recurrent (DCR) learning model aimed at learning route sorting scores and offering customized route recommendations. This approach effectively captures recommended navigation routes and user preferences by integrating DCN-v2 and LSTM. In offline evaluations, our method compared with the minimum ETA (estimated time of arrival), LightGBM, and DCN-v2 indicated 8.72%, 2.19%, and 0.9% reduction in the mean inconsistency rate respectively, demonstrating significant improvements in recommendation accuracy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3108869940
source Free E- Journals
subjects Customization
Depth profiling
Learning
Navigation
title Personalized Route Recommendation Based on User Habits for Vehicle Navigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Personalized%20Route%20Recommendation%20Based%20on%20User%20Habits%20for%20Vehicle%20Navigation&rft.jtitle=arXiv.org&rft.au=Huang,%20Yinuo&rft.date=2024-09-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3108869940%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108869940&rft_id=info:pmid/&rfr_iscdi=true