Experimental investigation into effects of combustor structure on characteristics of rotating detonation of cracked kerosene gas

This study examines the influence of the structure of the combustor on the propagation of rotating detonation waves (RDWs) of cracked kerosene gas (CKG) by using oxygen-rich air, with mass fractions of oxygen of 36% and 48%, as the oxidant while maintaining stable values of the state parameters of C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-09, Vol.36 (9)
Hauptverfasser: Han, Jiaxiang, Yang, Jianlu, Wang, Jinping, Bai, Qiaodong, Xiao, Qiang, Wu, Yuwen, Zheng, Quan, Weng, Chunsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Han, Jiaxiang
Yang, Jianlu
Wang, Jinping
Bai, Qiaodong
Xiao, Qiang
Wu, Yuwen
Zheng, Quan
Weng, Chunsheng
description This study examines the influence of the structure of the combustor on the propagation of rotating detonation waves (RDWs) of cracked kerosene gas (CKG) by using oxygen-rich air, with mass fractions of oxygen of 36% and 48%, as the oxidant while maintaining stable values of the state parameters of CKG. The experimental results showed that the structure of the combustor played a key role in the initiation and stable propagation of CKG, and suitable values of its width and the width of its outlet promoted the stable self-sustained propagation of the RDWs. Combustors of 8 and 14 mm width failed to initiate with 36% oxygen-rich air and without blockage ratio. In the combustors of 20 and 26 mm width, as the blockage ratio increased, the modes of propagation of the RDW included a single stable RDW, intermittent single RDW, and four, six, and eight counter-rotating RDWs. With the further increase in the blockage ratio, the reflected shock wave at the end of the combustor was enhanced, resulting in an increase in the number of RDW wave heads. As a result, the height of the fresh fuel layer was decreased, the mixing time was decreased and led to a decrease in the RDW velocity. The increase in the width of the combustor was conducive to the radial and axial diffusion of fuel and oxidizer in the combustor, which led to an obvious increase in the propagation velocity of RDW. In the 26 mm width combustor, the maximum RDW velocity is 1769 m/s.
doi_str_mv 10.1063/5.0232193
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3108825125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108825125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-64696a4de60a8ed559178ef6f2d2f0ef92fc2f05e769281b8e79978365235ac53</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWfDTZ5CilfkDBi56XNDup249NTbKiN3-62W7PnjKBZ56ZeRG6pmRCieT3YkIYZ1TzEzSiROmilFKe9nVJCik5PUcXMa4JIVwzOUK_8-89hGYHbTJb3LRfEFOzMqnxbf4lj8E5sCli77D1u2UXkw84ptDZ1AXAGbMfJhibsiW32gMZfMqKdoVrSL4dbL0gcxuo8QaCj9ACXpl4ic6c2Ua4Or5j9P44f5s9F4vXp5fZw6KwVLFUyKnU0kxrkMQoqIXQtFTgpGM1cwScZs7mQkApNVN0qaDUulRcCsaFsYKP0c3g3Qf_2eUrq7XvQptHVjwHpZigrKduB8rmDWMAV-1zOCb8VJRUfcCVqI4BZ_ZuYKNt0uHGf-A_mdB9LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108825125</pqid></control><display><type>article</type><title>Experimental investigation into effects of combustor structure on characteristics of rotating detonation of cracked kerosene gas</title><source>AIP Journals Complete</source><creator>Han, Jiaxiang ; Yang, Jianlu ; Wang, Jinping ; Bai, Qiaodong ; Xiao, Qiang ; Wu, Yuwen ; Zheng, Quan ; Weng, Chunsheng</creator><creatorcontrib>Han, Jiaxiang ; Yang, Jianlu ; Wang, Jinping ; Bai, Qiaodong ; Xiao, Qiang ; Wu, Yuwen ; Zheng, Quan ; Weng, Chunsheng</creatorcontrib><description>This study examines the influence of the structure of the combustor on the propagation of rotating detonation waves (RDWs) of cracked kerosene gas (CKG) by using oxygen-rich air, with mass fractions of oxygen of 36% and 48%, as the oxidant while maintaining stable values of the state parameters of CKG. The experimental results showed that the structure of the combustor played a key role in the initiation and stable propagation of CKG, and suitable values of its width and the width of its outlet promoted the stable self-sustained propagation of the RDWs. Combustors of 8 and 14 mm width failed to initiate with 36% oxygen-rich air and without blockage ratio. In the combustors of 20 and 26 mm width, as the blockage ratio increased, the modes of propagation of the RDW included a single stable RDW, intermittent single RDW, and four, six, and eight counter-rotating RDWs. With the further increase in the blockage ratio, the reflected shock wave at the end of the combustor was enhanced, resulting in an increase in the number of RDW wave heads. As a result, the height of the fresh fuel layer was decreased, the mixing time was decreased and led to a decrease in the RDW velocity. The increase in the width of the combustor was conducive to the radial and axial diffusion of fuel and oxidizer in the combustor, which led to an obvious increase in the propagation velocity of RDW. In the 26 mm width combustor, the maximum RDW velocity is 1769 m/s.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0232193</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Axial diffusion ; Combustion chambers ; Crack initiation ; Detonation waves ; Diffusion barriers ; Diffusion layers ; Fuels ; Kerosene ; Oxidizing agents ; Oxygen ; Propagation ; Propagation modes ; Propagation velocity ; Rotation ; Shock wave reflection</subject><ispartof>Physics of fluids (1994), 2024-09, Vol.36 (9)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-64696a4de60a8ed559178ef6f2d2f0ef92fc2f05e769281b8e79978365235ac53</cites><orcidid>0000-0003-4463-9239 ; 0000-0002-6338-5759 ; 0009-0009-9695-5875 ; 0000-0002-4829-7718 ; 0000-0001-7498-8283 ; 0000-0003-1918-3866 ; 0009-0000-4265-9864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Jiaxiang</creatorcontrib><creatorcontrib>Yang, Jianlu</creatorcontrib><creatorcontrib>Wang, Jinping</creatorcontrib><creatorcontrib>Bai, Qiaodong</creatorcontrib><creatorcontrib>Xiao, Qiang</creatorcontrib><creatorcontrib>Wu, Yuwen</creatorcontrib><creatorcontrib>Zheng, Quan</creatorcontrib><creatorcontrib>Weng, Chunsheng</creatorcontrib><title>Experimental investigation into effects of combustor structure on characteristics of rotating detonation of cracked kerosene gas</title><title>Physics of fluids (1994)</title><description>This study examines the influence of the structure of the combustor on the propagation of rotating detonation waves (RDWs) of cracked kerosene gas (CKG) by using oxygen-rich air, with mass fractions of oxygen of 36% and 48%, as the oxidant while maintaining stable values of the state parameters of CKG. The experimental results showed that the structure of the combustor played a key role in the initiation and stable propagation of CKG, and suitable values of its width and the width of its outlet promoted the stable self-sustained propagation of the RDWs. Combustors of 8 and 14 mm width failed to initiate with 36% oxygen-rich air and without blockage ratio. In the combustors of 20 and 26 mm width, as the blockage ratio increased, the modes of propagation of the RDW included a single stable RDW, intermittent single RDW, and four, six, and eight counter-rotating RDWs. With the further increase in the blockage ratio, the reflected shock wave at the end of the combustor was enhanced, resulting in an increase in the number of RDW wave heads. As a result, the height of the fresh fuel layer was decreased, the mixing time was decreased and led to a decrease in the RDW velocity. The increase in the width of the combustor was conducive to the radial and axial diffusion of fuel and oxidizer in the combustor, which led to an obvious increase in the propagation velocity of RDW. In the 26 mm width combustor, the maximum RDW velocity is 1769 m/s.</description><subject>Axial diffusion</subject><subject>Combustion chambers</subject><subject>Crack initiation</subject><subject>Detonation waves</subject><subject>Diffusion barriers</subject><subject>Diffusion layers</subject><subject>Fuels</subject><subject>Kerosene</subject><subject>Oxidizing agents</subject><subject>Oxygen</subject><subject>Propagation</subject><subject>Propagation modes</subject><subject>Propagation velocity</subject><subject>Rotation</subject><subject>Shock wave reflection</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWfDTZ5CilfkDBi56XNDup249NTbKiN3-62W7PnjKBZ56ZeRG6pmRCieT3YkIYZ1TzEzSiROmilFKe9nVJCik5PUcXMa4JIVwzOUK_8-89hGYHbTJb3LRfEFOzMqnxbf4lj8E5sCli77D1u2UXkw84ptDZ1AXAGbMfJhibsiW32gMZfMqKdoVrSL4dbL0gcxuo8QaCj9ACXpl4ic6c2Ua4Or5j9P44f5s9F4vXp5fZw6KwVLFUyKnU0kxrkMQoqIXQtFTgpGM1cwScZs7mQkApNVN0qaDUulRcCsaFsYKP0c3g3Qf_2eUrq7XvQptHVjwHpZigrKduB8rmDWMAV-1zOCb8VJRUfcCVqI4BZ_ZuYKNt0uHGf-A_mdB9LA</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Han, Jiaxiang</creator><creator>Yang, Jianlu</creator><creator>Wang, Jinping</creator><creator>Bai, Qiaodong</creator><creator>Xiao, Qiang</creator><creator>Wu, Yuwen</creator><creator>Zheng, Quan</creator><creator>Weng, Chunsheng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4463-9239</orcidid><orcidid>https://orcid.org/0000-0002-6338-5759</orcidid><orcidid>https://orcid.org/0009-0009-9695-5875</orcidid><orcidid>https://orcid.org/0000-0002-4829-7718</orcidid><orcidid>https://orcid.org/0000-0001-7498-8283</orcidid><orcidid>https://orcid.org/0000-0003-1918-3866</orcidid><orcidid>https://orcid.org/0009-0000-4265-9864</orcidid></search><sort><creationdate>202409</creationdate><title>Experimental investigation into effects of combustor structure on characteristics of rotating detonation of cracked kerosene gas</title><author>Han, Jiaxiang ; Yang, Jianlu ; Wang, Jinping ; Bai, Qiaodong ; Xiao, Qiang ; Wu, Yuwen ; Zheng, Quan ; Weng, Chunsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-64696a4de60a8ed559178ef6f2d2f0ef92fc2f05e769281b8e79978365235ac53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Axial diffusion</topic><topic>Combustion chambers</topic><topic>Crack initiation</topic><topic>Detonation waves</topic><topic>Diffusion barriers</topic><topic>Diffusion layers</topic><topic>Fuels</topic><topic>Kerosene</topic><topic>Oxidizing agents</topic><topic>Oxygen</topic><topic>Propagation</topic><topic>Propagation modes</topic><topic>Propagation velocity</topic><topic>Rotation</topic><topic>Shock wave reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Jiaxiang</creatorcontrib><creatorcontrib>Yang, Jianlu</creatorcontrib><creatorcontrib>Wang, Jinping</creatorcontrib><creatorcontrib>Bai, Qiaodong</creatorcontrib><creatorcontrib>Xiao, Qiang</creatorcontrib><creatorcontrib>Wu, Yuwen</creatorcontrib><creatorcontrib>Zheng, Quan</creatorcontrib><creatorcontrib>Weng, Chunsheng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Jiaxiang</au><au>Yang, Jianlu</au><au>Wang, Jinping</au><au>Bai, Qiaodong</au><au>Xiao, Qiang</au><au>Wu, Yuwen</au><au>Zheng, Quan</au><au>Weng, Chunsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation into effects of combustor structure on characteristics of rotating detonation of cracked kerosene gas</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-09</date><risdate>2024</risdate><volume>36</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This study examines the influence of the structure of the combustor on the propagation of rotating detonation waves (RDWs) of cracked kerosene gas (CKG) by using oxygen-rich air, with mass fractions of oxygen of 36% and 48%, as the oxidant while maintaining stable values of the state parameters of CKG. The experimental results showed that the structure of the combustor played a key role in the initiation and stable propagation of CKG, and suitable values of its width and the width of its outlet promoted the stable self-sustained propagation of the RDWs. Combustors of 8 and 14 mm width failed to initiate with 36% oxygen-rich air and without blockage ratio. In the combustors of 20 and 26 mm width, as the blockage ratio increased, the modes of propagation of the RDW included a single stable RDW, intermittent single RDW, and four, six, and eight counter-rotating RDWs. With the further increase in the blockage ratio, the reflected shock wave at the end of the combustor was enhanced, resulting in an increase in the number of RDW wave heads. As a result, the height of the fresh fuel layer was decreased, the mixing time was decreased and led to a decrease in the RDW velocity. The increase in the width of the combustor was conducive to the radial and axial diffusion of fuel and oxidizer in the combustor, which led to an obvious increase in the propagation velocity of RDW. In the 26 mm width combustor, the maximum RDW velocity is 1769 m/s.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0232193</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4463-9239</orcidid><orcidid>https://orcid.org/0000-0002-6338-5759</orcidid><orcidid>https://orcid.org/0009-0009-9695-5875</orcidid><orcidid>https://orcid.org/0000-0002-4829-7718</orcidid><orcidid>https://orcid.org/0000-0001-7498-8283</orcidid><orcidid>https://orcid.org/0000-0003-1918-3866</orcidid><orcidid>https://orcid.org/0009-0000-4265-9864</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-09, Vol.36 (9)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_3108825125
source AIP Journals Complete
subjects Axial diffusion
Combustion chambers
Crack initiation
Detonation waves
Diffusion barriers
Diffusion layers
Fuels
Kerosene
Oxidizing agents
Oxygen
Propagation
Propagation modes
Propagation velocity
Rotation
Shock wave reflection
title Experimental investigation into effects of combustor structure on characteristics of rotating detonation of cracked kerosene gas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20into%20effects%20of%20combustor%20structure%20on%20characteristics%20of%20rotating%20detonation%20of%20cracked%20kerosene%20gas&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Han,%20Jiaxiang&rft.date=2024-09&rft.volume=36&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0232193&rft_dat=%3Cproquest_scita%3E3108825125%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108825125&rft_id=info:pmid/&rfr_iscdi=true