H-closedness and absolute H-closedness
This paper focuses on the study of H -closedness and absolute H -closedness of the posets. First, we propose a counterexample to indicate that an absolutely H -closed topological semilattice may not be c -complete, which gives a negative answer to an open question proposed by Banakh and Bardyla. How...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2024-10, Vol.109 (2), p.279-295 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper focuses on the study of
H
-closedness and absolute
H
-closedness of the posets. First, we propose a counterexample to indicate that an absolutely
H
-closed topological semilattice may not be
c
-complete, which gives a negative answer to an open question proposed by Banakh and Bardyla. However, in the case of continuous semilattice with the Lawson topology, we prove that the absolutely
H
-closed topological semilattice implies
c
-completeness. Second, we obtain a characterization for quasicontinuous lattices utilizing the topological embedding mapping. Finally, enlightened by the definitions of
H
-closedness for Hausdorff spaces and absolute
H
-closedness for Hausdorff topological semilattices, we introduce the concepts of
H
-closedness and absolute
H
-closedness for posets with the Lawson topology. |
---|---|
ISSN: | 0037-1912 1432-2137 |
DOI: | 10.1007/s00233-024-10461-7 |