H-closedness and absolute H-closedness

This paper focuses on the study of H -closedness and absolute H -closedness of the posets. First, we propose a counterexample to indicate that an absolutely H -closed topological semilattice may not be c -complete, which gives a negative answer to an open question proposed by Banakh and Bardyla. How...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semigroup forum 2024-10, Vol.109 (2), p.279-295
Hauptverfasser: Chu, Xiangping, Li, Qingguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on the study of H -closedness and absolute H -closedness of the posets. First, we propose a counterexample to indicate that an absolutely H -closed topological semilattice may not be c -complete, which gives a negative answer to an open question proposed by Banakh and Bardyla. However, in the case of continuous semilattice with the Lawson topology, we prove that the absolutely H -closed topological semilattice implies c -completeness. Second, we obtain a characterization for quasicontinuous lattices utilizing the topological embedding mapping. Finally, enlightened by the definitions of H -closedness for Hausdorff spaces and absolute H -closedness for Hausdorff topological semilattices, we introduce the concepts of H -closedness and absolute H -closedness for posets with the Lawson topology.
ISSN:0037-1912
1432-2137
DOI:10.1007/s00233-024-10461-7