Effect of thermal uncertainty on piezoelectric control of doubly curved bimorph shell: acoustic characteristics

In this work, the sound transmission loss (STL) of a simply supported doubly curved shallow aluminum shell covered by two layers of piezoelectric material, PZT-5H is presented. The study takes into account the presence of uncertain ambient temperature which is shown to significantly affect piezoelec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive of applied mechanics (1991) 2024-10, Vol.94 (10), p.2967-2987
Hauptverfasser: Moustafa, N., Talebitooti, R., Daneshjou, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2987
container_issue 10
container_start_page 2967
container_title Archive of applied mechanics (1991)
container_volume 94
creator Moustafa, N.
Talebitooti, R.
Daneshjou, K.
description In this work, the sound transmission loss (STL) of a simply supported doubly curved shallow aluminum shell covered by two layers of piezoelectric material, PZT-5H is presented. The study takes into account the presence of uncertain ambient temperature which is shown to significantly affect piezoelectric control of sound transmission. To derive the equations of motion, the assumed mode method combined with the first-order shear deformation theory and Hamilton's principles are employed. The modeling process incorporates the ambient temperature and thoroughly investigates its effects on STL, vibrational displacement, and piezoelectric voltage in terms of thermal strain, piezoelectric constants, and the pyroelectric coefficient uncertainties. Results show that uncertainty in environmental temperature significantly affects STL uncertainty up to 10% and vibrational displacement of the shell to the 15 times of its lowest value. The piezoelectric voltage also fluctuates with the variation in the temperature in a maximum range of 0.12–5.2 Volt. Further, the piezoelectric sensing voltage which accounts for the piezoelectric sensor thickness is observed to be highly sensitive to the temperature uncertainty with a maximum range of 0.65–7.6 Volt, causing depolarization and hysteresis nonlinearity. Thus, environmental temperature variation is considered as one of the main uncertain aspects for robust sound transmission controller. The proposed study provides an insightful investigation for robust piezoelectric control of STL in the presence of thermal uncertainty.
doi_str_mv 10.1007/s00419-024-02653-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3108729710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108729710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-df17987d1b8d7bb50cd6c3da628db153b358f4d84b7491ccb559e3b8c1c47c213</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz9V8tE3qTZb1Axa86Dk0k9R26TY1SYX6681awZuHYRh43hnmQeiKkhtKiLgNhOS0ygjLU5UFz-YjtKI5ZxkpJT1GK1LxKqMF56foLIQdSXzByAq5TdNYiNg1OLbW7-seTwNYH-tuiDN2Ax47--VsnyDfAQY3RO_6A2_cpPsZw-Q_rcG62zs_tji0tu_vcA1uCvEQaGtfQ7S-O4zhAp00dR_s5W8_R28Pm9f1U7Z9eXxe328zYITEzDRUVFIYqqURWhcETAnc1CWTRqc3NC9kkxuZa5FXFEAXRWW5lkAhF8AoP0fXy97Ru4_Jhqh2bvJDOqk4JVKwSlCSKLZQ4F0I3jZq9N2-9rOiRB3EqkWsSmLVj1g1pxBfQiHBw7v1f6v_SX0D-9F-lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108729710</pqid></control><display><type>article</type><title>Effect of thermal uncertainty on piezoelectric control of doubly curved bimorph shell: acoustic characteristics</title><source>Springer Nature - Complete Springer Journals</source><creator>Moustafa, N. ; Talebitooti, R. ; Daneshjou, K.</creator><creatorcontrib>Moustafa, N. ; Talebitooti, R. ; Daneshjou, K.</creatorcontrib><description>In this work, the sound transmission loss (STL) of a simply supported doubly curved shallow aluminum shell covered by two layers of piezoelectric material, PZT-5H is presented. The study takes into account the presence of uncertain ambient temperature which is shown to significantly affect piezoelectric control of sound transmission. To derive the equations of motion, the assumed mode method combined with the first-order shear deformation theory and Hamilton's principles are employed. The modeling process incorporates the ambient temperature and thoroughly investigates its effects on STL, vibrational displacement, and piezoelectric voltage in terms of thermal strain, piezoelectric constants, and the pyroelectric coefficient uncertainties. Results show that uncertainty in environmental temperature significantly affects STL uncertainty up to 10% and vibrational displacement of the shell to the 15 times of its lowest value. The piezoelectric voltage also fluctuates with the variation in the temperature in a maximum range of 0.12–5.2 Volt. Further, the piezoelectric sensing voltage which accounts for the piezoelectric sensor thickness is observed to be highly sensitive to the temperature uncertainty with a maximum range of 0.65–7.6 Volt, causing depolarization and hysteresis nonlinearity. Thus, environmental temperature variation is considered as one of the main uncertain aspects for robust sound transmission controller. The proposed study provides an insightful investigation for robust piezoelectric control of STL in the presence of thermal uncertainty.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-024-02653-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ambient temperature ; Classical Mechanics ; Deformation effects ; Depolarization ; Electric potential ; Engineering ; Equations of motion ; Original ; Piezoelectricity ; Robust control ; Shear deformation ; Sound transmission ; Theoretical and Applied Mechanics ; Thermal strain ; Transmission loss ; Uncertainty ; Voltage</subject><ispartof>Archive of applied mechanics (1991), 2024-10, Vol.94 (10), p.2967-2987</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-df17987d1b8d7bb50cd6c3da628db153b358f4d84b7491ccb559e3b8c1c47c213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-024-02653-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-024-02653-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Moustafa, N.</creatorcontrib><creatorcontrib>Talebitooti, R.</creatorcontrib><creatorcontrib>Daneshjou, K.</creatorcontrib><title>Effect of thermal uncertainty on piezoelectric control of doubly curved bimorph shell: acoustic characteristics</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>In this work, the sound transmission loss (STL) of a simply supported doubly curved shallow aluminum shell covered by two layers of piezoelectric material, PZT-5H is presented. The study takes into account the presence of uncertain ambient temperature which is shown to significantly affect piezoelectric control of sound transmission. To derive the equations of motion, the assumed mode method combined with the first-order shear deformation theory and Hamilton's principles are employed. The modeling process incorporates the ambient temperature and thoroughly investigates its effects on STL, vibrational displacement, and piezoelectric voltage in terms of thermal strain, piezoelectric constants, and the pyroelectric coefficient uncertainties. Results show that uncertainty in environmental temperature significantly affects STL uncertainty up to 10% and vibrational displacement of the shell to the 15 times of its lowest value. The piezoelectric voltage also fluctuates with the variation in the temperature in a maximum range of 0.12–5.2 Volt. Further, the piezoelectric sensing voltage which accounts for the piezoelectric sensor thickness is observed to be highly sensitive to the temperature uncertainty with a maximum range of 0.65–7.6 Volt, causing depolarization and hysteresis nonlinearity. Thus, environmental temperature variation is considered as one of the main uncertain aspects for robust sound transmission controller. The proposed study provides an insightful investigation for robust piezoelectric control of STL in the presence of thermal uncertainty.</description><subject>Ambient temperature</subject><subject>Classical Mechanics</subject><subject>Deformation effects</subject><subject>Depolarization</subject><subject>Electric potential</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Original</subject><subject>Piezoelectricity</subject><subject>Robust control</subject><subject>Shear deformation</subject><subject>Sound transmission</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermal strain</subject><subject>Transmission loss</subject><subject>Uncertainty</subject><subject>Voltage</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Bz9V8tE3qTZb1Axa86Dk0k9R26TY1SYX6681awZuHYRh43hnmQeiKkhtKiLgNhOS0ygjLU5UFz-YjtKI5ZxkpJT1GK1LxKqMF56foLIQdSXzByAq5TdNYiNg1OLbW7-seTwNYH-tuiDN2Ax47--VsnyDfAQY3RO_6A2_cpPsZw-Q_rcG62zs_tji0tu_vcA1uCvEQaGtfQ7S-O4zhAp00dR_s5W8_R28Pm9f1U7Z9eXxe328zYITEzDRUVFIYqqURWhcETAnc1CWTRqc3NC9kkxuZa5FXFEAXRWW5lkAhF8AoP0fXy97Ru4_Jhqh2bvJDOqk4JVKwSlCSKLZQ4F0I3jZq9N2-9rOiRB3EqkWsSmLVj1g1pxBfQiHBw7v1f6v_SX0D-9F-lQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Moustafa, N.</creator><creator>Talebitooti, R.</creator><creator>Daneshjou, K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Effect of thermal uncertainty on piezoelectric control of doubly curved bimorph shell: acoustic characteristics</title><author>Moustafa, N. ; Talebitooti, R. ; Daneshjou, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-df17987d1b8d7bb50cd6c3da628db153b358f4d84b7491ccb559e3b8c1c47c213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambient temperature</topic><topic>Classical Mechanics</topic><topic>Deformation effects</topic><topic>Depolarization</topic><topic>Electric potential</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Original</topic><topic>Piezoelectricity</topic><topic>Robust control</topic><topic>Shear deformation</topic><topic>Sound transmission</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermal strain</topic><topic>Transmission loss</topic><topic>Uncertainty</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moustafa, N.</creatorcontrib><creatorcontrib>Talebitooti, R.</creatorcontrib><creatorcontrib>Daneshjou, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moustafa, N.</au><au>Talebitooti, R.</au><au>Daneshjou, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of thermal uncertainty on piezoelectric control of doubly curved bimorph shell: acoustic characteristics</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>94</volume><issue>10</issue><spage>2967</spage><epage>2987</epage><pages>2967-2987</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>In this work, the sound transmission loss (STL) of a simply supported doubly curved shallow aluminum shell covered by two layers of piezoelectric material, PZT-5H is presented. The study takes into account the presence of uncertain ambient temperature which is shown to significantly affect piezoelectric control of sound transmission. To derive the equations of motion, the assumed mode method combined with the first-order shear deformation theory and Hamilton's principles are employed. The modeling process incorporates the ambient temperature and thoroughly investigates its effects on STL, vibrational displacement, and piezoelectric voltage in terms of thermal strain, piezoelectric constants, and the pyroelectric coefficient uncertainties. Results show that uncertainty in environmental temperature significantly affects STL uncertainty up to 10% and vibrational displacement of the shell to the 15 times of its lowest value. The piezoelectric voltage also fluctuates with the variation in the temperature in a maximum range of 0.12–5.2 Volt. Further, the piezoelectric sensing voltage which accounts for the piezoelectric sensor thickness is observed to be highly sensitive to the temperature uncertainty with a maximum range of 0.65–7.6 Volt, causing depolarization and hysteresis nonlinearity. Thus, environmental temperature variation is considered as one of the main uncertain aspects for robust sound transmission controller. The proposed study provides an insightful investigation for robust piezoelectric control of STL in the presence of thermal uncertainty.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-024-02653-y</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0939-1533
ispartof Archive of applied mechanics (1991), 2024-10, Vol.94 (10), p.2967-2987
issn 0939-1533
1432-0681
language eng
recordid cdi_proquest_journals_3108729710
source Springer Nature - Complete Springer Journals
subjects Ambient temperature
Classical Mechanics
Deformation effects
Depolarization
Electric potential
Engineering
Equations of motion
Original
Piezoelectricity
Robust control
Shear deformation
Sound transmission
Theoretical and Applied Mechanics
Thermal strain
Transmission loss
Uncertainty
Voltage
title Effect of thermal uncertainty on piezoelectric control of doubly curved bimorph shell: acoustic characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20thermal%20uncertainty%20on%20piezoelectric%20control%20of%20doubly%20curved%20bimorph%20shell:%20acoustic%20characteristics&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Moustafa,%20N.&rft.date=2024-10-01&rft.volume=94&rft.issue=10&rft.spage=2967&rft.epage=2987&rft.pages=2967-2987&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-024-02653-y&rft_dat=%3Cproquest_cross%3E3108729710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108729710&rft_id=info:pmid/&rfr_iscdi=true