Effect of thermal uncertainty on piezoelectric control of doubly curved bimorph shell: acoustic characteristics
In this work, the sound transmission loss (STL) of a simply supported doubly curved shallow aluminum shell covered by two layers of piezoelectric material, PZT-5H is presented. The study takes into account the presence of uncertain ambient temperature which is shown to significantly affect piezoelec...
Gespeichert in:
Veröffentlicht in: | Archive of applied mechanics (1991) 2024-10, Vol.94 (10), p.2967-2987 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2987 |
---|---|
container_issue | 10 |
container_start_page | 2967 |
container_title | Archive of applied mechanics (1991) |
container_volume | 94 |
creator | Moustafa, N. Talebitooti, R. Daneshjou, K. |
description | In this work, the sound transmission loss (STL) of a simply supported doubly curved shallow aluminum shell covered by two layers of piezoelectric material, PZT-5H is presented. The study takes into account the presence of uncertain ambient temperature which is shown to significantly affect piezoelectric control of sound transmission. To derive the equations of motion, the assumed mode method combined with the first-order shear deformation theory and Hamilton's principles are employed. The modeling process incorporates the ambient temperature and thoroughly investigates its effects on STL, vibrational displacement, and piezoelectric voltage in terms of thermal strain, piezoelectric constants, and the pyroelectric coefficient uncertainties. Results show that uncertainty in environmental temperature significantly affects STL uncertainty up to 10% and vibrational displacement of the shell to the 15 times of its lowest value. The piezoelectric voltage also fluctuates with the variation in the temperature in a maximum range of 0.12–5.2 Volt. Further, the piezoelectric sensing voltage which accounts for the piezoelectric sensor thickness is observed to be highly sensitive to the temperature uncertainty with a maximum range of 0.65–7.6 Volt, causing depolarization and hysteresis nonlinearity. Thus, environmental temperature variation is considered as one of the main uncertain aspects for robust sound transmission controller. The proposed study provides an insightful investigation for robust piezoelectric control of STL in the presence of thermal uncertainty. |
doi_str_mv | 10.1007/s00419-024-02653-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3108729710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108729710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-df17987d1b8d7bb50cd6c3da628db153b358f4d84b7491ccb559e3b8c1c47c213</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz9V8tE3qTZb1Axa86Dk0k9R26TY1SYX6681awZuHYRh43hnmQeiKkhtKiLgNhOS0ygjLU5UFz-YjtKI5ZxkpJT1GK1LxKqMF56foLIQdSXzByAq5TdNYiNg1OLbW7-seTwNYH-tuiDN2Ax47--VsnyDfAQY3RO_6A2_cpPsZw-Q_rcG62zs_tji0tu_vcA1uCvEQaGtfQ7S-O4zhAp00dR_s5W8_R28Pm9f1U7Z9eXxe328zYITEzDRUVFIYqqURWhcETAnc1CWTRqc3NC9kkxuZa5FXFEAXRWW5lkAhF8AoP0fXy97Ru4_Jhqh2bvJDOqk4JVKwSlCSKLZQ4F0I3jZq9N2-9rOiRB3EqkWsSmLVj1g1pxBfQiHBw7v1f6v_SX0D-9F-lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108729710</pqid></control><display><type>article</type><title>Effect of thermal uncertainty on piezoelectric control of doubly curved bimorph shell: acoustic characteristics</title><source>Springer Nature - Complete Springer Journals</source><creator>Moustafa, N. ; Talebitooti, R. ; Daneshjou, K.</creator><creatorcontrib>Moustafa, N. ; Talebitooti, R. ; Daneshjou, K.</creatorcontrib><description>In this work, the sound transmission loss (STL) of a simply supported doubly curved shallow aluminum shell covered by two layers of piezoelectric material, PZT-5H is presented. The study takes into account the presence of uncertain ambient temperature which is shown to significantly affect piezoelectric control of sound transmission. To derive the equations of motion, the assumed mode method combined with the first-order shear deformation theory and Hamilton's principles are employed. The modeling process incorporates the ambient temperature and thoroughly investigates its effects on STL, vibrational displacement, and piezoelectric voltage in terms of thermal strain, piezoelectric constants, and the pyroelectric coefficient uncertainties. Results show that uncertainty in environmental temperature significantly affects STL uncertainty up to 10% and vibrational displacement of the shell to the 15 times of its lowest value. The piezoelectric voltage also fluctuates with the variation in the temperature in a maximum range of 0.12–5.2 Volt. Further, the piezoelectric sensing voltage which accounts for the piezoelectric sensor thickness is observed to be highly sensitive to the temperature uncertainty with a maximum range of 0.65–7.6 Volt, causing depolarization and hysteresis nonlinearity. Thus, environmental temperature variation is considered as one of the main uncertain aspects for robust sound transmission controller. The proposed study provides an insightful investigation for robust piezoelectric control of STL in the presence of thermal uncertainty.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-024-02653-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ambient temperature ; Classical Mechanics ; Deformation effects ; Depolarization ; Electric potential ; Engineering ; Equations of motion ; Original ; Piezoelectricity ; Robust control ; Shear deformation ; Sound transmission ; Theoretical and Applied Mechanics ; Thermal strain ; Transmission loss ; Uncertainty ; Voltage</subject><ispartof>Archive of applied mechanics (1991), 2024-10, Vol.94 (10), p.2967-2987</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-df17987d1b8d7bb50cd6c3da628db153b358f4d84b7491ccb559e3b8c1c47c213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-024-02653-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-024-02653-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Moustafa, N.</creatorcontrib><creatorcontrib>Talebitooti, R.</creatorcontrib><creatorcontrib>Daneshjou, K.</creatorcontrib><title>Effect of thermal uncertainty on piezoelectric control of doubly curved bimorph shell: acoustic characteristics</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>In this work, the sound transmission loss (STL) of a simply supported doubly curved shallow aluminum shell covered by two layers of piezoelectric material, PZT-5H is presented. The study takes into account the presence of uncertain ambient temperature which is shown to significantly affect piezoelectric control of sound transmission. To derive the equations of motion, the assumed mode method combined with the first-order shear deformation theory and Hamilton's principles are employed. The modeling process incorporates the ambient temperature and thoroughly investigates its effects on STL, vibrational displacement, and piezoelectric voltage in terms of thermal strain, piezoelectric constants, and the pyroelectric coefficient uncertainties. Results show that uncertainty in environmental temperature significantly affects STL uncertainty up to 10% and vibrational displacement of the shell to the 15 times of its lowest value. The piezoelectric voltage also fluctuates with the variation in the temperature in a maximum range of 0.12–5.2 Volt. Further, the piezoelectric sensing voltage which accounts for the piezoelectric sensor thickness is observed to be highly sensitive to the temperature uncertainty with a maximum range of 0.65–7.6 Volt, causing depolarization and hysteresis nonlinearity. Thus, environmental temperature variation is considered as one of the main uncertain aspects for robust sound transmission controller. The proposed study provides an insightful investigation for robust piezoelectric control of STL in the presence of thermal uncertainty.</description><subject>Ambient temperature</subject><subject>Classical Mechanics</subject><subject>Deformation effects</subject><subject>Depolarization</subject><subject>Electric potential</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Original</subject><subject>Piezoelectricity</subject><subject>Robust control</subject><subject>Shear deformation</subject><subject>Sound transmission</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermal strain</subject><subject>Transmission loss</subject><subject>Uncertainty</subject><subject>Voltage</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Bz9V8tE3qTZb1Axa86Dk0k9R26TY1SYX6681awZuHYRh43hnmQeiKkhtKiLgNhOS0ygjLU5UFz-YjtKI5ZxkpJT1GK1LxKqMF56foLIQdSXzByAq5TdNYiNg1OLbW7-seTwNYH-tuiDN2Ax47--VsnyDfAQY3RO_6A2_cpPsZw-Q_rcG62zs_tji0tu_vcA1uCvEQaGtfQ7S-O4zhAp00dR_s5W8_R28Pm9f1U7Z9eXxe328zYITEzDRUVFIYqqURWhcETAnc1CWTRqc3NC9kkxuZa5FXFEAXRWW5lkAhF8AoP0fXy97Ru4_Jhqh2bvJDOqk4JVKwSlCSKLZQ4F0I3jZq9N2-9rOiRB3EqkWsSmLVj1g1pxBfQiHBw7v1f6v_SX0D-9F-lQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Moustafa, N.</creator><creator>Talebitooti, R.</creator><creator>Daneshjou, K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Effect of thermal uncertainty on piezoelectric control of doubly curved bimorph shell: acoustic characteristics</title><author>Moustafa, N. ; Talebitooti, R. ; Daneshjou, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-df17987d1b8d7bb50cd6c3da628db153b358f4d84b7491ccb559e3b8c1c47c213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambient temperature</topic><topic>Classical Mechanics</topic><topic>Deformation effects</topic><topic>Depolarization</topic><topic>Electric potential</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Original</topic><topic>Piezoelectricity</topic><topic>Robust control</topic><topic>Shear deformation</topic><topic>Sound transmission</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermal strain</topic><topic>Transmission loss</topic><topic>Uncertainty</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moustafa, N.</creatorcontrib><creatorcontrib>Talebitooti, R.</creatorcontrib><creatorcontrib>Daneshjou, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moustafa, N.</au><au>Talebitooti, R.</au><au>Daneshjou, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of thermal uncertainty on piezoelectric control of doubly curved bimorph shell: acoustic characteristics</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>94</volume><issue>10</issue><spage>2967</spage><epage>2987</epage><pages>2967-2987</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>In this work, the sound transmission loss (STL) of a simply supported doubly curved shallow aluminum shell covered by two layers of piezoelectric material, PZT-5H is presented. The study takes into account the presence of uncertain ambient temperature which is shown to significantly affect piezoelectric control of sound transmission. To derive the equations of motion, the assumed mode method combined with the first-order shear deformation theory and Hamilton's principles are employed. The modeling process incorporates the ambient temperature and thoroughly investigates its effects on STL, vibrational displacement, and piezoelectric voltage in terms of thermal strain, piezoelectric constants, and the pyroelectric coefficient uncertainties. Results show that uncertainty in environmental temperature significantly affects STL uncertainty up to 10% and vibrational displacement of the shell to the 15 times of its lowest value. The piezoelectric voltage also fluctuates with the variation in the temperature in a maximum range of 0.12–5.2 Volt. Further, the piezoelectric sensing voltage which accounts for the piezoelectric sensor thickness is observed to be highly sensitive to the temperature uncertainty with a maximum range of 0.65–7.6 Volt, causing depolarization and hysteresis nonlinearity. Thus, environmental temperature variation is considered as one of the main uncertain aspects for robust sound transmission controller. The proposed study provides an insightful investigation for robust piezoelectric control of STL in the presence of thermal uncertainty.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-024-02653-y</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0939-1533 |
ispartof | Archive of applied mechanics (1991), 2024-10, Vol.94 (10), p.2967-2987 |
issn | 0939-1533 1432-0681 |
language | eng |
recordid | cdi_proquest_journals_3108729710 |
source | Springer Nature - Complete Springer Journals |
subjects | Ambient temperature Classical Mechanics Deformation effects Depolarization Electric potential Engineering Equations of motion Original Piezoelectricity Robust control Shear deformation Sound transmission Theoretical and Applied Mechanics Thermal strain Transmission loss Uncertainty Voltage |
title | Effect of thermal uncertainty on piezoelectric control of doubly curved bimorph shell: acoustic characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20thermal%20uncertainty%20on%20piezoelectric%20control%20of%20doubly%20curved%20bimorph%20shell:%20acoustic%20characteristics&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Moustafa,%20N.&rft.date=2024-10-01&rft.volume=94&rft.issue=10&rft.spage=2967&rft.epage=2987&rft.pages=2967-2987&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-024-02653-y&rft_dat=%3Cproquest_cross%3E3108729710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108729710&rft_id=info:pmid/&rfr_iscdi=true |