Carbon Nanospheres Loaded with Ir Single Atoms: Enhancing the Activity toward Formic Acid Oxidation by Increasing the Porosity

Theoretically, single‐atom catalysts (SACs) offer 100 % atom utilization, making them strong candidates to replace expensive nanoparticles for catalysis. However, the structural supports used to anchor the SACs dramatically reduce the utilization efficiency of atoms (i. e., the percent of atoms actu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2024-09, Vol.16 (18), p.n/a
Hauptverfasser: Jeskey, Jacob, Ding, Yong, Chen, Yidan, Hood, Zachary D., Li, Hongliang, Sterbinsky, George E., Xia, Younan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page
container_title ChemCatChem
container_volume 16
creator Jeskey, Jacob
Ding, Yong
Chen, Yidan
Hood, Zachary D.
Li, Hongliang
Sterbinsky, George E.
Xia, Younan
description Theoretically, single‐atom catalysts (SACs) offer 100 % atom utilization, making them strong candidates to replace expensive nanoparticles for catalysis. However, the structural supports used to anchor the SACs dramatically reduce the utilization efficiency of atoms (i. e., the percent of atoms actually accessible by reactants) by either encapsulating the SACs completely or creating severe diffusion limitation. Either of which leads to an overall low atom utilization and thus poor electrocatalytic activity similar to that of nanoparticles. In addressing this issue, we systematically investigated how the porous structure of carbon nanospheres affects the activity of Ir‐SACs toward formic acid oxidation (FAO). Specifically, we utilized a kinetically‐controlled growth strategy to produce uniform carbon nanospheres featuring yolk‐shell, mesoporous, and hollow structures with Ir‐SACs loaded throughout the structure. At a high specific surface area of 441 m2 g−1 and exposed metal content of 1.82 wt %, the Ir‐SACs based on mesoporous carbon nanospheres showed a remarkable FAO peak current density of 30.6 mA cm−2, which was 283 and 46 times greater when benchmarked against the catalysts based on solid carbon nanospheres and 20 wt % Ir/C, respectively. Iridium single‐atoms loaded on carbon nanospheres with varying architectures: solid, yolk‐shell, hollow, and mesoporous carbon nanospheres loaded with Ir SACs have been prepared using a simple, one‐pot synthesis. Benefiting from the improved active site exposure and mass diffusion, these catalysts exhibit high activities toward formic acid oxidation.
doi_str_mv 10.1002/cctc.202400499
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3108615080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108615080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2729-1b242863c540dbd7aa96a93c1e51784547d5dcccadbca2aa5d63e8c2b6d7a2503</originalsourceid><addsrcrecordid>eNqFkEFPAjEQhRujiYhePTfxDLbd7W7rjWxQSYiYiOem2xa3BLbYFnEv_nZLUDx6msnL-95MHgDXGA0xQuRWqaiGBJEcoZzzE9DDrCgHGeP89LgzdA4uQlgiVPCspD3wVUlfuxY-ydaFTWO8CXDqpDYa7mxs4MTDF9u-rQwcRbcOd3DcNrJVSYKxSaKK9sPGDka3k17De-fXViXZajj7tFpGm8LrDk5a5Y0Mv9yz8y4k7hKcLeQqmKuf2Qev9-N59TiYzh4m1Wg6UKQkfIBrkhNWZIrmSNe6lJIXkmcKG4pLltO81FQrpaSulSRSUl1khilSF8lLKMr64OaQu_HufWtCFEu39W06KTKMWIEpYnvX8OBS6bvgzUJsvF1L3wmMxL5jse9YHDtOAD8AO7sy3T9uUVXz6o_9BuHJge4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108615080</pqid></control><display><type>article</type><title>Carbon Nanospheres Loaded with Ir Single Atoms: Enhancing the Activity toward Formic Acid Oxidation by Increasing the Porosity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jeskey, Jacob ; Ding, Yong ; Chen, Yidan ; Hood, Zachary D. ; Li, Hongliang ; Sterbinsky, George E. ; Xia, Younan</creator><creatorcontrib>Jeskey, Jacob ; Ding, Yong ; Chen, Yidan ; Hood, Zachary D. ; Li, Hongliang ; Sterbinsky, George E. ; Xia, Younan</creatorcontrib><description>Theoretically, single‐atom catalysts (SACs) offer 100 % atom utilization, making them strong candidates to replace expensive nanoparticles for catalysis. However, the structural supports used to anchor the SACs dramatically reduce the utilization efficiency of atoms (i. e., the percent of atoms actually accessible by reactants) by either encapsulating the SACs completely or creating severe diffusion limitation. Either of which leads to an overall low atom utilization and thus poor electrocatalytic activity similar to that of nanoparticles. In addressing this issue, we systematically investigated how the porous structure of carbon nanospheres affects the activity of Ir‐SACs toward formic acid oxidation (FAO). Specifically, we utilized a kinetically‐controlled growth strategy to produce uniform carbon nanospheres featuring yolk‐shell, mesoporous, and hollow structures with Ir‐SACs loaded throughout the structure. At a high specific surface area of 441 m2 g−1 and exposed metal content of 1.82 wt %, the Ir‐SACs based on mesoporous carbon nanospheres showed a remarkable FAO peak current density of 30.6 mA cm−2, which was 283 and 46 times greater when benchmarked against the catalysts based on solid carbon nanospheres and 20 wt % Ir/C, respectively. Iridium single‐atoms loaded on carbon nanospheres with varying architectures: solid, yolk‐shell, hollow, and mesoporous carbon nanospheres loaded with Ir SACs have been prepared using a simple, one‐pot synthesis. Benefiting from the improved active site exposure and mass diffusion, these catalysts exhibit high activities toward formic acid oxidation.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202400499</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic structure ; Carbon ; carbon nanosphere ; Catalysis ; Catalysts ; Formic acid ; formic acid oxidation (FAO) ; iridium (Ir) ; Nanoparticles ; Nanospheres ; Oxidation ; single-atom catalysts (SACs) ; Utilization</subject><ispartof>ChemCatChem, 2024-09, Vol.16 (18), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2729-1b242863c540dbd7aa96a93c1e51784547d5dcccadbca2aa5d63e8c2b6d7a2503</cites><orcidid>0000-0002-5720-4392 ; 0000-0002-1451-5035 ; 0000-0002-2443-8424 ; 0000-0003-2431-7048 ; 0000-0001-9472-4138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202400499$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202400499$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jeskey, Jacob</creatorcontrib><creatorcontrib>Ding, Yong</creatorcontrib><creatorcontrib>Chen, Yidan</creatorcontrib><creatorcontrib>Hood, Zachary D.</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Sterbinsky, George E.</creatorcontrib><creatorcontrib>Xia, Younan</creatorcontrib><title>Carbon Nanospheres Loaded with Ir Single Atoms: Enhancing the Activity toward Formic Acid Oxidation by Increasing the Porosity</title><title>ChemCatChem</title><description>Theoretically, single‐atom catalysts (SACs) offer 100 % atom utilization, making them strong candidates to replace expensive nanoparticles for catalysis. However, the structural supports used to anchor the SACs dramatically reduce the utilization efficiency of atoms (i. e., the percent of atoms actually accessible by reactants) by either encapsulating the SACs completely or creating severe diffusion limitation. Either of which leads to an overall low atom utilization and thus poor electrocatalytic activity similar to that of nanoparticles. In addressing this issue, we systematically investigated how the porous structure of carbon nanospheres affects the activity of Ir‐SACs toward formic acid oxidation (FAO). Specifically, we utilized a kinetically‐controlled growth strategy to produce uniform carbon nanospheres featuring yolk‐shell, mesoporous, and hollow structures with Ir‐SACs loaded throughout the structure. At a high specific surface area of 441 m2 g−1 and exposed metal content of 1.82 wt %, the Ir‐SACs based on mesoporous carbon nanospheres showed a remarkable FAO peak current density of 30.6 mA cm−2, which was 283 and 46 times greater when benchmarked against the catalysts based on solid carbon nanospheres and 20 wt % Ir/C, respectively. Iridium single‐atoms loaded on carbon nanospheres with varying architectures: solid, yolk‐shell, hollow, and mesoporous carbon nanospheres loaded with Ir SACs have been prepared using a simple, one‐pot synthesis. Benefiting from the improved active site exposure and mass diffusion, these catalysts exhibit high activities toward formic acid oxidation.</description><subject>Atomic structure</subject><subject>Carbon</subject><subject>carbon nanosphere</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Formic acid</subject><subject>formic acid oxidation (FAO)</subject><subject>iridium (Ir)</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Oxidation</subject><subject>single-atom catalysts (SACs)</subject><subject>Utilization</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPAjEQhRujiYhePTfxDLbd7W7rjWxQSYiYiOem2xa3BLbYFnEv_nZLUDx6msnL-95MHgDXGA0xQuRWqaiGBJEcoZzzE9DDrCgHGeP89LgzdA4uQlgiVPCspD3wVUlfuxY-ydaFTWO8CXDqpDYa7mxs4MTDF9u-rQwcRbcOd3DcNrJVSYKxSaKK9sPGDka3k17De-fXViXZajj7tFpGm8LrDk5a5Y0Mv9yz8y4k7hKcLeQqmKuf2Qev9-N59TiYzh4m1Wg6UKQkfIBrkhNWZIrmSNe6lJIXkmcKG4pLltO81FQrpaSulSRSUl1khilSF8lLKMr64OaQu_HufWtCFEu39W06KTKMWIEpYnvX8OBS6bvgzUJsvF1L3wmMxL5jse9YHDtOAD8AO7sy3T9uUVXz6o_9BuHJge4</recordid><startdate>20240923</startdate><enddate>20240923</enddate><creator>Jeskey, Jacob</creator><creator>Ding, Yong</creator><creator>Chen, Yidan</creator><creator>Hood, Zachary D.</creator><creator>Li, Hongliang</creator><creator>Sterbinsky, George E.</creator><creator>Xia, Younan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5720-4392</orcidid><orcidid>https://orcid.org/0000-0002-1451-5035</orcidid><orcidid>https://orcid.org/0000-0002-2443-8424</orcidid><orcidid>https://orcid.org/0000-0003-2431-7048</orcidid><orcidid>https://orcid.org/0000-0001-9472-4138</orcidid></search><sort><creationdate>20240923</creationdate><title>Carbon Nanospheres Loaded with Ir Single Atoms: Enhancing the Activity toward Formic Acid Oxidation by Increasing the Porosity</title><author>Jeskey, Jacob ; Ding, Yong ; Chen, Yidan ; Hood, Zachary D. ; Li, Hongliang ; Sterbinsky, George E. ; Xia, Younan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2729-1b242863c540dbd7aa96a93c1e51784547d5dcccadbca2aa5d63e8c2b6d7a2503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic structure</topic><topic>Carbon</topic><topic>carbon nanosphere</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Formic acid</topic><topic>formic acid oxidation (FAO)</topic><topic>iridium (Ir)</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Oxidation</topic><topic>single-atom catalysts (SACs)</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeskey, Jacob</creatorcontrib><creatorcontrib>Ding, Yong</creatorcontrib><creatorcontrib>Chen, Yidan</creatorcontrib><creatorcontrib>Hood, Zachary D.</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Sterbinsky, George E.</creatorcontrib><creatorcontrib>Xia, Younan</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeskey, Jacob</au><au>Ding, Yong</au><au>Chen, Yidan</au><au>Hood, Zachary D.</au><au>Li, Hongliang</au><au>Sterbinsky, George E.</au><au>Xia, Younan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nanospheres Loaded with Ir Single Atoms: Enhancing the Activity toward Formic Acid Oxidation by Increasing the Porosity</atitle><jtitle>ChemCatChem</jtitle><date>2024-09-23</date><risdate>2024</risdate><volume>16</volume><issue>18</issue><epage>n/a</epage><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Theoretically, single‐atom catalysts (SACs) offer 100 % atom utilization, making them strong candidates to replace expensive nanoparticles for catalysis. However, the structural supports used to anchor the SACs dramatically reduce the utilization efficiency of atoms (i. e., the percent of atoms actually accessible by reactants) by either encapsulating the SACs completely or creating severe diffusion limitation. Either of which leads to an overall low atom utilization and thus poor electrocatalytic activity similar to that of nanoparticles. In addressing this issue, we systematically investigated how the porous structure of carbon nanospheres affects the activity of Ir‐SACs toward formic acid oxidation (FAO). Specifically, we utilized a kinetically‐controlled growth strategy to produce uniform carbon nanospheres featuring yolk‐shell, mesoporous, and hollow structures with Ir‐SACs loaded throughout the structure. At a high specific surface area of 441 m2 g−1 and exposed metal content of 1.82 wt %, the Ir‐SACs based on mesoporous carbon nanospheres showed a remarkable FAO peak current density of 30.6 mA cm−2, which was 283 and 46 times greater when benchmarked against the catalysts based on solid carbon nanospheres and 20 wt % Ir/C, respectively. Iridium single‐atoms loaded on carbon nanospheres with varying architectures: solid, yolk‐shell, hollow, and mesoporous carbon nanospheres loaded with Ir SACs have been prepared using a simple, one‐pot synthesis. Benefiting from the improved active site exposure and mass diffusion, these catalysts exhibit high activities toward formic acid oxidation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202400499</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5720-4392</orcidid><orcidid>https://orcid.org/0000-0002-1451-5035</orcidid><orcidid>https://orcid.org/0000-0002-2443-8424</orcidid><orcidid>https://orcid.org/0000-0003-2431-7048</orcidid><orcidid>https://orcid.org/0000-0001-9472-4138</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2024-09, Vol.16 (18), p.n/a
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_3108615080
source Wiley Online Library Journals Frontfile Complete
subjects Atomic structure
Carbon
carbon nanosphere
Catalysis
Catalysts
Formic acid
formic acid oxidation (FAO)
iridium (Ir)
Nanoparticles
Nanospheres
Oxidation
single-atom catalysts (SACs)
Utilization
title Carbon Nanospheres Loaded with Ir Single Atoms: Enhancing the Activity toward Formic Acid Oxidation by Increasing the Porosity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nanospheres%20Loaded%20with%20Ir%20Single%20Atoms:%20Enhancing%20the%20Activity%20toward%20Formic%20Acid%20Oxidation%20by%20Increasing%20the%20Porosity&rft.jtitle=ChemCatChem&rft.au=Jeskey,%20Jacob&rft.date=2024-09-23&rft.volume=16&rft.issue=18&rft.epage=n/a&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202400499&rft_dat=%3Cproquest_cross%3E3108615080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108615080&rft_id=info:pmid/&rfr_iscdi=true