Latent side-information dynamic augmentation for incremental recommendation

The incremental recommendation involves updating existing models by extracting information from interaction data at current time-step, with the aim of maintaining model accuracy while addressing limitations including parameter dependencies and inefficient training. However, real-time user interactio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge and information systems 2024-10, Vol.66 (10), p.6051-6078
Hauptverfasser: Zhang, Jing, Shi, Jin, Duan, Jingsheng, Ren, Yonggong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6078
container_issue 10
container_start_page 6051
container_title Knowledge and information systems
container_volume 66
creator Zhang, Jing
Shi, Jin
Duan, Jingsheng
Ren, Yonggong
description The incremental recommendation involves updating existing models by extracting information from interaction data at current time-step, with the aim of maintaining model accuracy while addressing limitations including parameter dependencies and inefficient training. However, real-time user interaction data is often afflicted by substantial noise and invalid samples, presenting the following key challenges for incremental model updating: (1) how to effectively extract valuable new knowledge from interaction data at the current time-step to ensure model accuracy and timeliness, and (2) how to safeguard against the catastrophic forgetting of long-term stable preference information, thus preserving the model’s sensitivity during cold-starts. In response to these challenges, we propose the Incremental Recommendation with Stable Latent Side-information Updating (SIIFR). This model employs a side-information augmenter to extract valuable latent side-information from user interaction behavior at time-step T , thereby sidestepping the interference caused by noisy interaction data and acquiring stable user preference. Moreover, the model utilizes rough interaction data at time-step T + 1 , in conjunction with existing side-information enhancements to achieve incremental updates of latent preferences, thereby ensuring the model’s efficacy during cold-start. Furthermore, SIIFR leverages the change rate in user latent side-information to mitigate catastrophic forgetting that results in the loss of long-term stable preference information. The effectiveness of the proposed model is validated and compared against existing models using four popular incremental datasets. The model code can be achieved at: https://github.com/LNNU-computer-research-526/FR-sii .
doi_str_mv 10.1007/s10115-024-02165-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3108468226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108468226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-b163529a78d9ce0d56e76ee5691a69e05ed74ed0e7de4d890f6ddb5812084d13</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThV4hyw0yZpjmjin5jEZfcoa9yp05qOpDvs2xPWSdw4WH6yf8-WHmP3CI8IoJ8SAqLkIKpcqCQ3F2yWleEloro8ayy1vmY3KW0BUCvEGftcupHCWKTOE-9CO8Tejd0QCn8Mru-awh02fQamYV4XXWginUa7IlIz9Fn70_qWXbVul-ju3Ods9fqyWrzz5dfbx-J5yRsBMPI1qlIK43TtTUPgpSKtiKQy6JQhkOR1RR5Ie6p8baBV3q9ljQLqymM5Zw_T2X0cvg-URrsdDjHkj7bEjKhaCJUpMVFNHFKK1Np97HoXjxbB_mZmp8xszsyeMrMmm8rJlDIcNhT_Tv_j-gEoXW_e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108468226</pqid></control><display><type>article</type><title>Latent side-information dynamic augmentation for incremental recommendation</title><source>SpringerNature Journals</source><creator>Zhang, Jing ; Shi, Jin ; Duan, Jingsheng ; Ren, Yonggong</creator><creatorcontrib>Zhang, Jing ; Shi, Jin ; Duan, Jingsheng ; Ren, Yonggong</creatorcontrib><description>The incremental recommendation involves updating existing models by extracting information from interaction data at current time-step, with the aim of maintaining model accuracy while addressing limitations including parameter dependencies and inefficient training. However, real-time user interaction data is often afflicted by substantial noise and invalid samples, presenting the following key challenges for incremental model updating: (1) how to effectively extract valuable new knowledge from interaction data at the current time-step to ensure model accuracy and timeliness, and (2) how to safeguard against the catastrophic forgetting of long-term stable preference information, thus preserving the model’s sensitivity during cold-starts. In response to these challenges, we propose the Incremental Recommendation with Stable Latent Side-information Updating (SIIFR). This model employs a side-information augmenter to extract valuable latent side-information from user interaction behavior at time-step T , thereby sidestepping the interference caused by noisy interaction data and acquiring stable user preference. Moreover, the model utilizes rough interaction data at time-step T + 1 , in conjunction with existing side-information enhancements to achieve incremental updates of latent preferences, thereby ensuring the model’s efficacy during cold-start. Furthermore, SIIFR leverages the change rate in user latent side-information to mitigate catastrophic forgetting that results in the loss of long-term stable preference information. The effectiveness of the proposed model is validated and compared against existing models using four popular incremental datasets. The model code can be achieved at: https://github.com/LNNU-computer-research-526/FR-sii .</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-024-02165-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Computer Science ; Data acquisition ; Data augmentation ; Data Mining and Knowledge Discovery ; Database Management ; Effectiveness ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Model updating ; Preferences ; Real time ; Regular Paper</subject><ispartof>Knowledge and information systems, 2024-10, Vol.66 (10), p.6051-6078</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-b163529a78d9ce0d56e76ee5691a69e05ed74ed0e7de4d890f6ddb5812084d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10115-024-02165-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10115-024-02165-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Shi, Jin</creatorcontrib><creatorcontrib>Duan, Jingsheng</creatorcontrib><creatorcontrib>Ren, Yonggong</creatorcontrib><title>Latent side-information dynamic augmentation for incremental recommendation</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>The incremental recommendation involves updating existing models by extracting information from interaction data at current time-step, with the aim of maintaining model accuracy while addressing limitations including parameter dependencies and inefficient training. However, real-time user interaction data is often afflicted by substantial noise and invalid samples, presenting the following key challenges for incremental model updating: (1) how to effectively extract valuable new knowledge from interaction data at the current time-step to ensure model accuracy and timeliness, and (2) how to safeguard against the catastrophic forgetting of long-term stable preference information, thus preserving the model’s sensitivity during cold-starts. In response to these challenges, we propose the Incremental Recommendation with Stable Latent Side-information Updating (SIIFR). This model employs a side-information augmenter to extract valuable latent side-information from user interaction behavior at time-step T , thereby sidestepping the interference caused by noisy interaction data and acquiring stable user preference. Moreover, the model utilizes rough interaction data at time-step T + 1 , in conjunction with existing side-information enhancements to achieve incremental updates of latent preferences, thereby ensuring the model’s efficacy during cold-start. Furthermore, SIIFR leverages the change rate in user latent side-information to mitigate catastrophic forgetting that results in the loss of long-term stable preference information. The effectiveness of the proposed model is validated and compared against existing models using four popular incremental datasets. The model code can be achieved at: https://github.com/LNNU-computer-research-526/FR-sii .</description><subject>Accuracy</subject><subject>Computer Science</subject><subject>Data acquisition</subject><subject>Data augmentation</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Effectiveness</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Model updating</subject><subject>Preferences</subject><subject>Real time</subject><subject>Regular Paper</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwBThV4hyw0yZpjmjin5jEZfcoa9yp05qOpDvs2xPWSdw4WH6yf8-WHmP3CI8IoJ8SAqLkIKpcqCQ3F2yWleEloro8ayy1vmY3KW0BUCvEGftcupHCWKTOE-9CO8Tejd0QCn8Mru-awh02fQamYV4XXWginUa7IlIz9Fn70_qWXbVul-ju3Ods9fqyWrzz5dfbx-J5yRsBMPI1qlIK43TtTUPgpSKtiKQy6JQhkOR1RR5Ie6p8baBV3q9ljQLqymM5Zw_T2X0cvg-URrsdDjHkj7bEjKhaCJUpMVFNHFKK1Np97HoXjxbB_mZmp8xszsyeMrMmm8rJlDIcNhT_Tv_j-gEoXW_e</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhang, Jing</creator><creator>Shi, Jin</creator><creator>Duan, Jingsheng</creator><creator>Ren, Yonggong</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20241001</creationdate><title>Latent side-information dynamic augmentation for incremental recommendation</title><author>Zhang, Jing ; Shi, Jin ; Duan, Jingsheng ; Ren, Yonggong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-b163529a78d9ce0d56e76ee5691a69e05ed74ed0e7de4d890f6ddb5812084d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Computer Science</topic><topic>Data acquisition</topic><topic>Data augmentation</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Effectiveness</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Model updating</topic><topic>Preferences</topic><topic>Real time</topic><topic>Regular Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Shi, Jin</creatorcontrib><creatorcontrib>Duan, Jingsheng</creatorcontrib><creatorcontrib>Ren, Yonggong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Shi, Jin</au><au>Duan, Jingsheng</au><au>Ren, Yonggong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Latent side-information dynamic augmentation for incremental recommendation</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>66</volume><issue>10</issue><spage>6051</spage><epage>6078</epage><pages>6051-6078</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>The incremental recommendation involves updating existing models by extracting information from interaction data at current time-step, with the aim of maintaining model accuracy while addressing limitations including parameter dependencies and inefficient training. However, real-time user interaction data is often afflicted by substantial noise and invalid samples, presenting the following key challenges for incremental model updating: (1) how to effectively extract valuable new knowledge from interaction data at the current time-step to ensure model accuracy and timeliness, and (2) how to safeguard against the catastrophic forgetting of long-term stable preference information, thus preserving the model’s sensitivity during cold-starts. In response to these challenges, we propose the Incremental Recommendation with Stable Latent Side-information Updating (SIIFR). This model employs a side-information augmenter to extract valuable latent side-information from user interaction behavior at time-step T , thereby sidestepping the interference caused by noisy interaction data and acquiring stable user preference. Moreover, the model utilizes rough interaction data at time-step T + 1 , in conjunction with existing side-information enhancements to achieve incremental updates of latent preferences, thereby ensuring the model’s efficacy during cold-start. Furthermore, SIIFR leverages the change rate in user latent side-information to mitigate catastrophic forgetting that results in the loss of long-term stable preference information. The effectiveness of the proposed model is validated and compared against existing models using four popular incremental datasets. The model code can be achieved at: https://github.com/LNNU-computer-research-526/FR-sii .</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-024-02165-9</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0219-1377
ispartof Knowledge and information systems, 2024-10, Vol.66 (10), p.6051-6078
issn 0219-1377
0219-3116
language eng
recordid cdi_proquest_journals_3108468226
source SpringerNature Journals
subjects Accuracy
Computer Science
Data acquisition
Data augmentation
Data Mining and Knowledge Discovery
Database Management
Effectiveness
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
Model updating
Preferences
Real time
Regular Paper
title Latent side-information dynamic augmentation for incremental recommendation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Latent%20side-information%20dynamic%20augmentation%20for%20incremental%20recommendation&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Zhang,%20Jing&rft.date=2024-10-01&rft.volume=66&rft.issue=10&rft.spage=6051&rft.epage=6078&rft.pages=6051-6078&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-024-02165-9&rft_dat=%3Cproquest_cross%3E3108468226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108468226&rft_id=info:pmid/&rfr_iscdi=true