Latent side-information dynamic augmentation for incremental recommendation
The incremental recommendation involves updating existing models by extracting information from interaction data at current time-step, with the aim of maintaining model accuracy while addressing limitations including parameter dependencies and inefficient training. However, real-time user interactio...
Gespeichert in:
Veröffentlicht in: | Knowledge and information systems 2024-10, Vol.66 (10), p.6051-6078 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6078 |
---|---|
container_issue | 10 |
container_start_page | 6051 |
container_title | Knowledge and information systems |
container_volume | 66 |
creator | Zhang, Jing Shi, Jin Duan, Jingsheng Ren, Yonggong |
description | The incremental recommendation involves updating existing models by extracting information from interaction data at current time-step, with the aim of maintaining model accuracy while addressing limitations including parameter dependencies and inefficient training. However, real-time user interaction data is often afflicted by substantial noise and invalid samples, presenting the following key challenges for incremental model updating: (1) how to effectively extract valuable new knowledge from interaction data at the current time-step to ensure model accuracy and timeliness, and (2) how to safeguard against the catastrophic forgetting of long-term stable preference information, thus preserving the model’s sensitivity during cold-starts. In response to these challenges, we propose the Incremental Recommendation with Stable Latent Side-information Updating (SIIFR). This model employs a side-information augmenter to extract valuable latent side-information from user interaction behavior at time-step
T
, thereby sidestepping the interference caused by noisy interaction data and acquiring stable user preference. Moreover, the model utilizes rough interaction data at time-step
T
+
1
, in conjunction with existing side-information enhancements to achieve incremental updates of latent preferences, thereby ensuring the model’s efficacy during cold-start. Furthermore, SIIFR leverages the change rate in user latent side-information to mitigate catastrophic forgetting that results in the loss of long-term stable preference information. The effectiveness of the proposed model is validated and compared against existing models using four popular incremental datasets. The model code can be achieved at:
https://github.com/LNNU-computer-research-526/FR-sii
. |
doi_str_mv | 10.1007/s10115-024-02165-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3108468226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108468226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-b163529a78d9ce0d56e76ee5691a69e05ed74ed0e7de4d890f6ddb5812084d13</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThV4hyw0yZpjmjin5jEZfcoa9yp05qOpDvs2xPWSdw4WH6yf8-WHmP3CI8IoJ8SAqLkIKpcqCQ3F2yWleEloro8ayy1vmY3KW0BUCvEGftcupHCWKTOE-9CO8Tejd0QCn8Mru-awh02fQamYV4XXWginUa7IlIz9Fn70_qWXbVul-ju3Ods9fqyWrzz5dfbx-J5yRsBMPI1qlIK43TtTUPgpSKtiKQy6JQhkOR1RR5Ie6p8baBV3q9ljQLqymM5Zw_T2X0cvg-URrsdDjHkj7bEjKhaCJUpMVFNHFKK1Np97HoXjxbB_mZmp8xszsyeMrMmm8rJlDIcNhT_Tv_j-gEoXW_e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108468226</pqid></control><display><type>article</type><title>Latent side-information dynamic augmentation for incremental recommendation</title><source>SpringerNature Journals</source><creator>Zhang, Jing ; Shi, Jin ; Duan, Jingsheng ; Ren, Yonggong</creator><creatorcontrib>Zhang, Jing ; Shi, Jin ; Duan, Jingsheng ; Ren, Yonggong</creatorcontrib><description>The incremental recommendation involves updating existing models by extracting information from interaction data at current time-step, with the aim of maintaining model accuracy while addressing limitations including parameter dependencies and inefficient training. However, real-time user interaction data is often afflicted by substantial noise and invalid samples, presenting the following key challenges for incremental model updating: (1) how to effectively extract valuable new knowledge from interaction data at the current time-step to ensure model accuracy and timeliness, and (2) how to safeguard against the catastrophic forgetting of long-term stable preference information, thus preserving the model’s sensitivity during cold-starts. In response to these challenges, we propose the Incremental Recommendation with Stable Latent Side-information Updating (SIIFR). This model employs a side-information augmenter to extract valuable latent side-information from user interaction behavior at time-step
T
, thereby sidestepping the interference caused by noisy interaction data and acquiring stable user preference. Moreover, the model utilizes rough interaction data at time-step
T
+
1
, in conjunction with existing side-information enhancements to achieve incremental updates of latent preferences, thereby ensuring the model’s efficacy during cold-start. Furthermore, SIIFR leverages the change rate in user latent side-information to mitigate catastrophic forgetting that results in the loss of long-term stable preference information. The effectiveness of the proposed model is validated and compared against existing models using four popular incremental datasets. The model code can be achieved at:
https://github.com/LNNU-computer-research-526/FR-sii
.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-024-02165-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Computer Science ; Data acquisition ; Data augmentation ; Data Mining and Knowledge Discovery ; Database Management ; Effectiveness ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Model updating ; Preferences ; Real time ; Regular Paper</subject><ispartof>Knowledge and information systems, 2024-10, Vol.66 (10), p.6051-6078</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-b163529a78d9ce0d56e76ee5691a69e05ed74ed0e7de4d890f6ddb5812084d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10115-024-02165-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10115-024-02165-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Shi, Jin</creatorcontrib><creatorcontrib>Duan, Jingsheng</creatorcontrib><creatorcontrib>Ren, Yonggong</creatorcontrib><title>Latent side-information dynamic augmentation for incremental recommendation</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>The incremental recommendation involves updating existing models by extracting information from interaction data at current time-step, with the aim of maintaining model accuracy while addressing limitations including parameter dependencies and inefficient training. However, real-time user interaction data is often afflicted by substantial noise and invalid samples, presenting the following key challenges for incremental model updating: (1) how to effectively extract valuable new knowledge from interaction data at the current time-step to ensure model accuracy and timeliness, and (2) how to safeguard against the catastrophic forgetting of long-term stable preference information, thus preserving the model’s sensitivity during cold-starts. In response to these challenges, we propose the Incremental Recommendation with Stable Latent Side-information Updating (SIIFR). This model employs a side-information augmenter to extract valuable latent side-information from user interaction behavior at time-step
T
, thereby sidestepping the interference caused by noisy interaction data and acquiring stable user preference. Moreover, the model utilizes rough interaction data at time-step
T
+
1
, in conjunction with existing side-information enhancements to achieve incremental updates of latent preferences, thereby ensuring the model’s efficacy during cold-start. Furthermore, SIIFR leverages the change rate in user latent side-information to mitigate catastrophic forgetting that results in the loss of long-term stable preference information. The effectiveness of the proposed model is validated and compared against existing models using four popular incremental datasets. The model code can be achieved at:
https://github.com/LNNU-computer-research-526/FR-sii
.</description><subject>Accuracy</subject><subject>Computer Science</subject><subject>Data acquisition</subject><subject>Data augmentation</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Effectiveness</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Model updating</subject><subject>Preferences</subject><subject>Real time</subject><subject>Regular Paper</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwBThV4hyw0yZpjmjin5jEZfcoa9yp05qOpDvs2xPWSdw4WH6yf8-WHmP3CI8IoJ8SAqLkIKpcqCQ3F2yWleEloro8ayy1vmY3KW0BUCvEGftcupHCWKTOE-9CO8Tejd0QCn8Mru-awh02fQamYV4XXWginUa7IlIz9Fn70_qWXbVul-ju3Ods9fqyWrzz5dfbx-J5yRsBMPI1qlIK43TtTUPgpSKtiKQy6JQhkOR1RR5Ie6p8baBV3q9ljQLqymM5Zw_T2X0cvg-URrsdDjHkj7bEjKhaCJUpMVFNHFKK1Np97HoXjxbB_mZmp8xszsyeMrMmm8rJlDIcNhT_Tv_j-gEoXW_e</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhang, Jing</creator><creator>Shi, Jin</creator><creator>Duan, Jingsheng</creator><creator>Ren, Yonggong</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20241001</creationdate><title>Latent side-information dynamic augmentation for incremental recommendation</title><author>Zhang, Jing ; Shi, Jin ; Duan, Jingsheng ; Ren, Yonggong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-b163529a78d9ce0d56e76ee5691a69e05ed74ed0e7de4d890f6ddb5812084d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Computer Science</topic><topic>Data acquisition</topic><topic>Data augmentation</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Effectiveness</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Model updating</topic><topic>Preferences</topic><topic>Real time</topic><topic>Regular Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Shi, Jin</creatorcontrib><creatorcontrib>Duan, Jingsheng</creatorcontrib><creatorcontrib>Ren, Yonggong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Shi, Jin</au><au>Duan, Jingsheng</au><au>Ren, Yonggong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Latent side-information dynamic augmentation for incremental recommendation</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>66</volume><issue>10</issue><spage>6051</spage><epage>6078</epage><pages>6051-6078</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>The incremental recommendation involves updating existing models by extracting information from interaction data at current time-step, with the aim of maintaining model accuracy while addressing limitations including parameter dependencies and inefficient training. However, real-time user interaction data is often afflicted by substantial noise and invalid samples, presenting the following key challenges for incremental model updating: (1) how to effectively extract valuable new knowledge from interaction data at the current time-step to ensure model accuracy and timeliness, and (2) how to safeguard against the catastrophic forgetting of long-term stable preference information, thus preserving the model’s sensitivity during cold-starts. In response to these challenges, we propose the Incremental Recommendation with Stable Latent Side-information Updating (SIIFR). This model employs a side-information augmenter to extract valuable latent side-information from user interaction behavior at time-step
T
, thereby sidestepping the interference caused by noisy interaction data and acquiring stable user preference. Moreover, the model utilizes rough interaction data at time-step
T
+
1
, in conjunction with existing side-information enhancements to achieve incremental updates of latent preferences, thereby ensuring the model’s efficacy during cold-start. Furthermore, SIIFR leverages the change rate in user latent side-information to mitigate catastrophic forgetting that results in the loss of long-term stable preference information. The effectiveness of the proposed model is validated and compared against existing models using four popular incremental datasets. The model code can be achieved at:
https://github.com/LNNU-computer-research-526/FR-sii
.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-024-02165-9</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0219-1377 |
ispartof | Knowledge and information systems, 2024-10, Vol.66 (10), p.6051-6078 |
issn | 0219-1377 0219-3116 |
language | eng |
recordid | cdi_proquest_journals_3108468226 |
source | SpringerNature Journals |
subjects | Accuracy Computer Science Data acquisition Data augmentation Data Mining and Knowledge Discovery Database Management Effectiveness Information Storage and Retrieval Information Systems and Communication Service Information Systems Applications (incl.Internet) IT in Business Model updating Preferences Real time Regular Paper |
title | Latent side-information dynamic augmentation for incremental recommendation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Latent%20side-information%20dynamic%20augmentation%20for%20incremental%20recommendation&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Zhang,%20Jing&rft.date=2024-10-01&rft.volume=66&rft.issue=10&rft.spage=6051&rft.epage=6078&rft.pages=6051-6078&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-024-02165-9&rft_dat=%3Cproquest_cross%3E3108468226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108468226&rft_id=info:pmid/&rfr_iscdi=true |