Plant colonizers of a mercury contaminated site: trace metals and associated rhizosphere bacteria
Background and aims Mercury (Hg) contamination poses severe human and environmental health risks. We aimed to evaluate the colonization of Hg-contaminated sites by native plants and the prokaryotic composition of rhizosphere soil communities of the dominant plant species. Methods A field study was c...
Gespeichert in:
Veröffentlicht in: | Plant and soil 2024-03, Vol.502 (1-2), p.373-396 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 396 |
---|---|
container_issue | 1-2 |
container_start_page | 373 |
container_title | Plant and soil |
container_volume | 502 |
creator | Tiodar, Emanuela D. Chiriac, Cecilia M. Pošćić, Filip Văcar, Cristina L. Balázs, Zoltan R. Coman, Cristian Weindorf, David C. Banciu, Manuela Krämer, Ute Podar, Dorina |
description | Background and aims
Mercury (Hg) contamination poses severe human and environmental health risks. We aimed to evaluate the colonization of Hg-contaminated sites by native plants and the prokaryotic composition of rhizosphere soil communities of the dominant plant species.
Methods
A field study was conducted at a Hg-contaminated site in Romania. Metal concentrations in soil and plant samples were analyzed using portable X-ray fluorescence spectrometry. The prokaryotic composition of rhizosphere soil communities was determined through 16S rRNA amplicon sequencing and community functionality was predicted through PICRUSt2.
Results
Site-specific trace metal distribution across the site drove plant species distribution in the highly contaminated soil, with
Lotus tenuis
and
Diplotaxis muralis
associated with higher Hg concentrations. In addition, for the bacterial communities in the rhizosphere soil of
D. muralis
, there was no observable decrease in alpha diversity with increasing soil Hg levels. Notably, Actinomycetota had an average of 24% relative abundance in the rhizosphere communities that also tested positive for the presence of
merA
, whereas in the absence of
merA
the phylum’s relative abundance was approximately 2%.
merA
positive rhizosphere communities also displayed an inferred increase in ABC transporters.
Conclusions
The results suggest a dependence of species-wise plant survival on local trace metal levels in soil, as well as an intricate interplay of the latter with rhizosphere bacterial diversity. Knowledge of these interdependencies could have implications for phytoremediation stakeholders, as it may allow for the selection of plant species and appropriate soil microbial inoculates with elevated Hg tolerance. |
doi_str_mv | 10.1007/s11104-024-06552-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3108467953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108467953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-453bcb8d613728712ccd04f0036702c72b7eaeea48093ebba8c9bf6ea0c537313</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA8-ok2d3sepPiPyjoQcFbmM3O2i3tpibpoX56067gzcMwzPB7b4bH2KWAawGgb4IQAvIMZKqyKGSmj9hEFFplBajymE0AlMxA1x-n7CyEJexnUU4Yvq5wiNy6lRv6b_KBu44jX5O3W79L-yHiuh8wUstDH-mWR4-WEhBxFTgOLccQnO0PhF_03y5sFuSJN2gj-R7P2UmXULr47VP2_nD_NnvK5i-Pz7O7eWaVyGOWF6qxTdWWQmlZaSGtbSHv0p-lBmm1bDQhEeYV1IqaBitbN11JCLZQWgk1ZVej78a7ry2FaJZu64d00igBVV7qulCJkiNlvQvBU2c2vl-j3xkBZh-lGaM0KUpziNLoJFKjKCR4-CT_Z_2P6gffMHfa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108467953</pqid></control><display><type>article</type><title>Plant colonizers of a mercury contaminated site: trace metals and associated rhizosphere bacteria</title><source>SpringerNature Journals</source><creator>Tiodar, Emanuela D. ; Chiriac, Cecilia M. ; Pošćić, Filip ; Văcar, Cristina L. ; Balázs, Zoltan R. ; Coman, Cristian ; Weindorf, David C. ; Banciu, Manuela ; Krämer, Ute ; Podar, Dorina</creator><creatorcontrib>Tiodar, Emanuela D. ; Chiriac, Cecilia M. ; Pošćić, Filip ; Văcar, Cristina L. ; Balázs, Zoltan R. ; Coman, Cristian ; Weindorf, David C. ; Banciu, Manuela ; Krämer, Ute ; Podar, Dorina</creatorcontrib><description>Background and aims
Mercury (Hg) contamination poses severe human and environmental health risks. We aimed to evaluate the colonization of Hg-contaminated sites by native plants and the prokaryotic composition of rhizosphere soil communities of the dominant plant species.
Methods
A field study was conducted at a Hg-contaminated site in Romania. Metal concentrations in soil and plant samples were analyzed using portable X-ray fluorescence spectrometry. The prokaryotic composition of rhizosphere soil communities was determined through 16S rRNA amplicon sequencing and community functionality was predicted through PICRUSt2.
Results
Site-specific trace metal distribution across the site drove plant species distribution in the highly contaminated soil, with
Lotus tenuis
and
Diplotaxis muralis
associated with higher Hg concentrations. In addition, for the bacterial communities in the rhizosphere soil of
D. muralis
, there was no observable decrease in alpha diversity with increasing soil Hg levels. Notably, Actinomycetota had an average of 24% relative abundance in the rhizosphere communities that also tested positive for the presence of
merA
, whereas in the absence of
merA
the phylum’s relative abundance was approximately 2%.
merA
positive rhizosphere communities also displayed an inferred increase in ABC transporters.
Conclusions
The results suggest a dependence of species-wise plant survival on local trace metal levels in soil, as well as an intricate interplay of the latter with rhizosphere bacterial diversity. Knowledge of these interdependencies could have implications for phytoremediation stakeholders, as it may allow for the selection of plant species and appropriate soil microbial inoculates with elevated Hg tolerance.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-024-06552-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Abundance ; Agriculture ; Alpha rays ; Bacteria ; Biomedical and Life Sciences ; Diplotaxis muralis ; Ecology ; Environmental health ; Flowers & plants ; Geographical distribution ; Health risks ; Heavy metals ; Indigenous plants ; Indigenous species ; Life Sciences ; Mercury ; Metal concentrations ; Microorganisms ; Phytoremediation ; Plant layout ; Plant Physiology ; Plant Sciences ; Plant species ; Relative abundance ; Research Article ; Rhizosphere ; rRNA 16S ; Soil analysis ; Soil contamination ; Soil microorganisms ; Soil pollution ; Soil Science & Conservation ; Spectrometry ; Trace metals ; X-ray fluorescence</subject><ispartof>Plant and soil, 2024-03, Vol.502 (1-2), p.373-396</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-453bcb8d613728712ccd04f0036702c72b7eaeea48093ebba8c9bf6ea0c537313</cites><orcidid>0000-0002-3814-825X ; 0000-0001-8188-6154 ; 0000-0003-2556-4008 ; 0000-0002-5964-1932 ; 0000-0003-3082-402X ; 0000-0001-5130-5232 ; 0000-0002-6642-1532 ; 0000-0002-0955-7425 ; 0000-0001-7870-4508 ; 0009-0006-5947-2610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11104-024-06552-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11104-024-06552-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Tiodar, Emanuela D.</creatorcontrib><creatorcontrib>Chiriac, Cecilia M.</creatorcontrib><creatorcontrib>Pošćić, Filip</creatorcontrib><creatorcontrib>Văcar, Cristina L.</creatorcontrib><creatorcontrib>Balázs, Zoltan R.</creatorcontrib><creatorcontrib>Coman, Cristian</creatorcontrib><creatorcontrib>Weindorf, David C.</creatorcontrib><creatorcontrib>Banciu, Manuela</creatorcontrib><creatorcontrib>Krämer, Ute</creatorcontrib><creatorcontrib>Podar, Dorina</creatorcontrib><title>Plant colonizers of a mercury contaminated site: trace metals and associated rhizosphere bacteria</title><title>Plant and soil</title><addtitle>Plant Soil</addtitle><description>Background and aims
Mercury (Hg) contamination poses severe human and environmental health risks. We aimed to evaluate the colonization of Hg-contaminated sites by native plants and the prokaryotic composition of rhizosphere soil communities of the dominant plant species.
Methods
A field study was conducted at a Hg-contaminated site in Romania. Metal concentrations in soil and plant samples were analyzed using portable X-ray fluorescence spectrometry. The prokaryotic composition of rhizosphere soil communities was determined through 16S rRNA amplicon sequencing and community functionality was predicted through PICRUSt2.
Results
Site-specific trace metal distribution across the site drove plant species distribution in the highly contaminated soil, with
Lotus tenuis
and
Diplotaxis muralis
associated with higher Hg concentrations. In addition, for the bacterial communities in the rhizosphere soil of
D. muralis
, there was no observable decrease in alpha diversity with increasing soil Hg levels. Notably, Actinomycetota had an average of 24% relative abundance in the rhizosphere communities that also tested positive for the presence of
merA
, whereas in the absence of
merA
the phylum’s relative abundance was approximately 2%.
merA
positive rhizosphere communities also displayed an inferred increase in ABC transporters.
Conclusions
The results suggest a dependence of species-wise plant survival on local trace metal levels in soil, as well as an intricate interplay of the latter with rhizosphere bacterial diversity. Knowledge of these interdependencies could have implications for phytoremediation stakeholders, as it may allow for the selection of plant species and appropriate soil microbial inoculates with elevated Hg tolerance.</description><subject>Abundance</subject><subject>Agriculture</subject><subject>Alpha rays</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Diplotaxis muralis</subject><subject>Ecology</subject><subject>Environmental health</subject><subject>Flowers & plants</subject><subject>Geographical distribution</subject><subject>Health risks</subject><subject>Heavy metals</subject><subject>Indigenous plants</subject><subject>Indigenous species</subject><subject>Life Sciences</subject><subject>Mercury</subject><subject>Metal concentrations</subject><subject>Microorganisms</subject><subject>Phytoremediation</subject><subject>Plant layout</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Relative abundance</subject><subject>Research Article</subject><subject>Rhizosphere</subject><subject>rRNA 16S</subject><subject>Soil analysis</subject><subject>Soil contamination</subject><subject>Soil microorganisms</subject><subject>Soil pollution</subject><subject>Soil Science & Conservation</subject><subject>Spectrometry</subject><subject>Trace metals</subject><subject>X-ray fluorescence</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPA8-ok2d3sepPiPyjoQcFbmM3O2i3tpibpoX56067gzcMwzPB7b4bH2KWAawGgb4IQAvIMZKqyKGSmj9hEFFplBajymE0AlMxA1x-n7CyEJexnUU4Yvq5wiNy6lRv6b_KBu44jX5O3W79L-yHiuh8wUstDH-mWR4-WEhBxFTgOLccQnO0PhF_03y5sFuSJN2gj-R7P2UmXULr47VP2_nD_NnvK5i-Pz7O7eWaVyGOWF6qxTdWWQmlZaSGtbSHv0p-lBmm1bDQhEeYV1IqaBitbN11JCLZQWgk1ZVej78a7ry2FaJZu64d00igBVV7qulCJkiNlvQvBU2c2vl-j3xkBZh-lGaM0KUpziNLoJFKjKCR4-CT_Z_2P6gffMHfa</recordid><startdate>20240316</startdate><enddate>20240316</enddate><creator>Tiodar, Emanuela D.</creator><creator>Chiriac, Cecilia M.</creator><creator>Pošćić, Filip</creator><creator>Văcar, Cristina L.</creator><creator>Balázs, Zoltan R.</creator><creator>Coman, Cristian</creator><creator>Weindorf, David C.</creator><creator>Banciu, Manuela</creator><creator>Krämer, Ute</creator><creator>Podar, Dorina</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3814-825X</orcidid><orcidid>https://orcid.org/0000-0001-8188-6154</orcidid><orcidid>https://orcid.org/0000-0003-2556-4008</orcidid><orcidid>https://orcid.org/0000-0002-5964-1932</orcidid><orcidid>https://orcid.org/0000-0003-3082-402X</orcidid><orcidid>https://orcid.org/0000-0001-5130-5232</orcidid><orcidid>https://orcid.org/0000-0002-6642-1532</orcidid><orcidid>https://orcid.org/0000-0002-0955-7425</orcidid><orcidid>https://orcid.org/0000-0001-7870-4508</orcidid><orcidid>https://orcid.org/0009-0006-5947-2610</orcidid></search><sort><creationdate>20240316</creationdate><title>Plant colonizers of a mercury contaminated site: trace metals and associated rhizosphere bacteria</title><author>Tiodar, Emanuela D. ; Chiriac, Cecilia M. ; Pošćić, Filip ; Văcar, Cristina L. ; Balázs, Zoltan R. ; Coman, Cristian ; Weindorf, David C. ; Banciu, Manuela ; Krämer, Ute ; Podar, Dorina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-453bcb8d613728712ccd04f0036702c72b7eaeea48093ebba8c9bf6ea0c537313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abundance</topic><topic>Agriculture</topic><topic>Alpha rays</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Diplotaxis muralis</topic><topic>Ecology</topic><topic>Environmental health</topic><topic>Flowers & plants</topic><topic>Geographical distribution</topic><topic>Health risks</topic><topic>Heavy metals</topic><topic>Indigenous plants</topic><topic>Indigenous species</topic><topic>Life Sciences</topic><topic>Mercury</topic><topic>Metal concentrations</topic><topic>Microorganisms</topic><topic>Phytoremediation</topic><topic>Plant layout</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Relative abundance</topic><topic>Research Article</topic><topic>Rhizosphere</topic><topic>rRNA 16S</topic><topic>Soil analysis</topic><topic>Soil contamination</topic><topic>Soil microorganisms</topic><topic>Soil pollution</topic><topic>Soil Science & Conservation</topic><topic>Spectrometry</topic><topic>Trace metals</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiodar, Emanuela D.</creatorcontrib><creatorcontrib>Chiriac, Cecilia M.</creatorcontrib><creatorcontrib>Pošćić, Filip</creatorcontrib><creatorcontrib>Văcar, Cristina L.</creatorcontrib><creatorcontrib>Balázs, Zoltan R.</creatorcontrib><creatorcontrib>Coman, Cristian</creatorcontrib><creatorcontrib>Weindorf, David C.</creatorcontrib><creatorcontrib>Banciu, Manuela</creatorcontrib><creatorcontrib>Krämer, Ute</creatorcontrib><creatorcontrib>Podar, Dorina</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiodar, Emanuela D.</au><au>Chiriac, Cecilia M.</au><au>Pošćić, Filip</au><au>Văcar, Cristina L.</au><au>Balázs, Zoltan R.</au><au>Coman, Cristian</au><au>Weindorf, David C.</au><au>Banciu, Manuela</au><au>Krämer, Ute</au><au>Podar, Dorina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant colonizers of a mercury contaminated site: trace metals and associated rhizosphere bacteria</atitle><jtitle>Plant and soil</jtitle><stitle>Plant Soil</stitle><date>2024-03-16</date><risdate>2024</risdate><volume>502</volume><issue>1-2</issue><spage>373</spage><epage>396</epage><pages>373-396</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><abstract>Background and aims
Mercury (Hg) contamination poses severe human and environmental health risks. We aimed to evaluate the colonization of Hg-contaminated sites by native plants and the prokaryotic composition of rhizosphere soil communities of the dominant plant species.
Methods
A field study was conducted at a Hg-contaminated site in Romania. Metal concentrations in soil and plant samples were analyzed using portable X-ray fluorescence spectrometry. The prokaryotic composition of rhizosphere soil communities was determined through 16S rRNA amplicon sequencing and community functionality was predicted through PICRUSt2.
Results
Site-specific trace metal distribution across the site drove plant species distribution in the highly contaminated soil, with
Lotus tenuis
and
Diplotaxis muralis
associated with higher Hg concentrations. In addition, for the bacterial communities in the rhizosphere soil of
D. muralis
, there was no observable decrease in alpha diversity with increasing soil Hg levels. Notably, Actinomycetota had an average of 24% relative abundance in the rhizosphere communities that also tested positive for the presence of
merA
, whereas in the absence of
merA
the phylum’s relative abundance was approximately 2%.
merA
positive rhizosphere communities also displayed an inferred increase in ABC transporters.
Conclusions
The results suggest a dependence of species-wise plant survival on local trace metal levels in soil, as well as an intricate interplay of the latter with rhizosphere bacterial diversity. Knowledge of these interdependencies could have implications for phytoremediation stakeholders, as it may allow for the selection of plant species and appropriate soil microbial inoculates with elevated Hg tolerance.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11104-024-06552-7</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-3814-825X</orcidid><orcidid>https://orcid.org/0000-0001-8188-6154</orcidid><orcidid>https://orcid.org/0000-0003-2556-4008</orcidid><orcidid>https://orcid.org/0000-0002-5964-1932</orcidid><orcidid>https://orcid.org/0000-0003-3082-402X</orcidid><orcidid>https://orcid.org/0000-0001-5130-5232</orcidid><orcidid>https://orcid.org/0000-0002-6642-1532</orcidid><orcidid>https://orcid.org/0000-0002-0955-7425</orcidid><orcidid>https://orcid.org/0000-0001-7870-4508</orcidid><orcidid>https://orcid.org/0009-0006-5947-2610</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-079X |
ispartof | Plant and soil, 2024-03, Vol.502 (1-2), p.373-396 |
issn | 0032-079X 1573-5036 |
language | eng |
recordid | cdi_proquest_journals_3108467953 |
source | SpringerNature Journals |
subjects | Abundance Agriculture Alpha rays Bacteria Biomedical and Life Sciences Diplotaxis muralis Ecology Environmental health Flowers & plants Geographical distribution Health risks Heavy metals Indigenous plants Indigenous species Life Sciences Mercury Metal concentrations Microorganisms Phytoremediation Plant layout Plant Physiology Plant Sciences Plant species Relative abundance Research Article Rhizosphere rRNA 16S Soil analysis Soil contamination Soil microorganisms Soil pollution Soil Science & Conservation Spectrometry Trace metals X-ray fluorescence |
title | Plant colonizers of a mercury contaminated site: trace metals and associated rhizosphere bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20colonizers%20of%20a%20mercury%20contaminated%20site:%20trace%20metals%20and%20associated%20rhizosphere%20bacteria&rft.jtitle=Plant%20and%20soil&rft.au=Tiodar,%20Emanuela%20D.&rft.date=2024-03-16&rft.volume=502&rft.issue=1-2&rft.spage=373&rft.epage=396&rft.pages=373-396&rft.issn=0032-079X&rft.eissn=1573-5036&rft_id=info:doi/10.1007/s11104-024-06552-7&rft_dat=%3Cproquest_cross%3E3108467953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108467953&rft_id=info:pmid/&rfr_iscdi=true |