Plant colonizers of a mercury contaminated site: trace metals and associated rhizosphere bacteria

Background and aims Mercury (Hg) contamination poses severe human and environmental health risks. We aimed to evaluate the colonization of Hg-contaminated sites by native plants and the prokaryotic composition of rhizosphere soil communities of the dominant plant species. Methods A field study was c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and soil 2024-03, Vol.502 (1-2), p.373-396
Hauptverfasser: Tiodar, Emanuela D., Chiriac, Cecilia M., Pošćić, Filip, Văcar, Cristina L., Balázs, Zoltan R., Coman, Cristian, Weindorf, David C., Banciu, Manuela, Krämer, Ute, Podar, Dorina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 396
container_issue 1-2
container_start_page 373
container_title Plant and soil
container_volume 502
creator Tiodar, Emanuela D.
Chiriac, Cecilia M.
Pošćić, Filip
Văcar, Cristina L.
Balázs, Zoltan R.
Coman, Cristian
Weindorf, David C.
Banciu, Manuela
Krämer, Ute
Podar, Dorina
description Background and aims Mercury (Hg) contamination poses severe human and environmental health risks. We aimed to evaluate the colonization of Hg-contaminated sites by native plants and the prokaryotic composition of rhizosphere soil communities of the dominant plant species. Methods A field study was conducted at a Hg-contaminated site in Romania. Metal concentrations in soil and plant samples were analyzed using portable X-ray fluorescence spectrometry. The prokaryotic composition of rhizosphere soil communities was determined through 16S rRNA amplicon sequencing and community functionality was predicted through PICRUSt2. Results Site-specific trace metal distribution across the site drove plant species distribution in the highly contaminated soil, with Lotus tenuis and Diplotaxis muralis associated with higher Hg concentrations. In addition, for the bacterial communities in the rhizosphere soil of D. muralis , there was no observable decrease in alpha diversity with increasing soil Hg levels. Notably, Actinomycetota had an average of 24% relative abundance in the rhizosphere communities that also tested positive for the presence of merA , whereas in the absence of merA the phylum’s relative abundance was approximately 2%. merA positive rhizosphere communities also displayed an inferred increase in ABC transporters. Conclusions The results suggest a dependence of species-wise plant survival on local trace metal levels in soil, as well as an intricate interplay of the latter with rhizosphere bacterial diversity. Knowledge of these interdependencies could have implications for phytoremediation stakeholders, as it may allow for the selection of plant species and appropriate soil microbial inoculates with elevated Hg tolerance.
doi_str_mv 10.1007/s11104-024-06552-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3108467953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108467953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-453bcb8d613728712ccd04f0036702c72b7eaeea48093ebba8c9bf6ea0c537313</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA8-ok2d3sepPiPyjoQcFbmM3O2i3tpibpoX56067gzcMwzPB7b4bH2KWAawGgb4IQAvIMZKqyKGSmj9hEFFplBajymE0AlMxA1x-n7CyEJexnUU4Yvq5wiNy6lRv6b_KBu44jX5O3W79L-yHiuh8wUstDH-mWR4-WEhBxFTgOLccQnO0PhF_03y5sFuSJN2gj-R7P2UmXULr47VP2_nD_NnvK5i-Pz7O7eWaVyGOWF6qxTdWWQmlZaSGtbSHv0p-lBmm1bDQhEeYV1IqaBitbN11JCLZQWgk1ZVej78a7ry2FaJZu64d00igBVV7qulCJkiNlvQvBU2c2vl-j3xkBZh-lGaM0KUpziNLoJFKjKCR4-CT_Z_2P6gffMHfa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108467953</pqid></control><display><type>article</type><title>Plant colonizers of a mercury contaminated site: trace metals and associated rhizosphere bacteria</title><source>SpringerNature Journals</source><creator>Tiodar, Emanuela D. ; Chiriac, Cecilia M. ; Pošćić, Filip ; Văcar, Cristina L. ; Balázs, Zoltan R. ; Coman, Cristian ; Weindorf, David C. ; Banciu, Manuela ; Krämer, Ute ; Podar, Dorina</creator><creatorcontrib>Tiodar, Emanuela D. ; Chiriac, Cecilia M. ; Pošćić, Filip ; Văcar, Cristina L. ; Balázs, Zoltan R. ; Coman, Cristian ; Weindorf, David C. ; Banciu, Manuela ; Krämer, Ute ; Podar, Dorina</creatorcontrib><description>Background and aims Mercury (Hg) contamination poses severe human and environmental health risks. We aimed to evaluate the colonization of Hg-contaminated sites by native plants and the prokaryotic composition of rhizosphere soil communities of the dominant plant species. Methods A field study was conducted at a Hg-contaminated site in Romania. Metal concentrations in soil and plant samples were analyzed using portable X-ray fluorescence spectrometry. The prokaryotic composition of rhizosphere soil communities was determined through 16S rRNA amplicon sequencing and community functionality was predicted through PICRUSt2. Results Site-specific trace metal distribution across the site drove plant species distribution in the highly contaminated soil, with Lotus tenuis and Diplotaxis muralis associated with higher Hg concentrations. In addition, for the bacterial communities in the rhizosphere soil of D. muralis , there was no observable decrease in alpha diversity with increasing soil Hg levels. Notably, Actinomycetota had an average of 24% relative abundance in the rhizosphere communities that also tested positive for the presence of merA , whereas in the absence of merA the phylum’s relative abundance was approximately 2%. merA positive rhizosphere communities also displayed an inferred increase in ABC transporters. Conclusions The results suggest a dependence of species-wise plant survival on local trace metal levels in soil, as well as an intricate interplay of the latter with rhizosphere bacterial diversity. Knowledge of these interdependencies could have implications for phytoremediation stakeholders, as it may allow for the selection of plant species and appropriate soil microbial inoculates with elevated Hg tolerance.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-024-06552-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Abundance ; Agriculture ; Alpha rays ; Bacteria ; Biomedical and Life Sciences ; Diplotaxis muralis ; Ecology ; Environmental health ; Flowers &amp; plants ; Geographical distribution ; Health risks ; Heavy metals ; Indigenous plants ; Indigenous species ; Life Sciences ; Mercury ; Metal concentrations ; Microorganisms ; Phytoremediation ; Plant layout ; Plant Physiology ; Plant Sciences ; Plant species ; Relative abundance ; Research Article ; Rhizosphere ; rRNA 16S ; Soil analysis ; Soil contamination ; Soil microorganisms ; Soil pollution ; Soil Science &amp; Conservation ; Spectrometry ; Trace metals ; X-ray fluorescence</subject><ispartof>Plant and soil, 2024-03, Vol.502 (1-2), p.373-396</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-453bcb8d613728712ccd04f0036702c72b7eaeea48093ebba8c9bf6ea0c537313</cites><orcidid>0000-0002-3814-825X ; 0000-0001-8188-6154 ; 0000-0003-2556-4008 ; 0000-0002-5964-1932 ; 0000-0003-3082-402X ; 0000-0001-5130-5232 ; 0000-0002-6642-1532 ; 0000-0002-0955-7425 ; 0000-0001-7870-4508 ; 0009-0006-5947-2610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11104-024-06552-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11104-024-06552-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Tiodar, Emanuela D.</creatorcontrib><creatorcontrib>Chiriac, Cecilia M.</creatorcontrib><creatorcontrib>Pošćić, Filip</creatorcontrib><creatorcontrib>Văcar, Cristina L.</creatorcontrib><creatorcontrib>Balázs, Zoltan R.</creatorcontrib><creatorcontrib>Coman, Cristian</creatorcontrib><creatorcontrib>Weindorf, David C.</creatorcontrib><creatorcontrib>Banciu, Manuela</creatorcontrib><creatorcontrib>Krämer, Ute</creatorcontrib><creatorcontrib>Podar, Dorina</creatorcontrib><title>Plant colonizers of a mercury contaminated site: trace metals and associated rhizosphere bacteria</title><title>Plant and soil</title><addtitle>Plant Soil</addtitle><description>Background and aims Mercury (Hg) contamination poses severe human and environmental health risks. We aimed to evaluate the colonization of Hg-contaminated sites by native plants and the prokaryotic composition of rhizosphere soil communities of the dominant plant species. Methods A field study was conducted at a Hg-contaminated site in Romania. Metal concentrations in soil and plant samples were analyzed using portable X-ray fluorescence spectrometry. The prokaryotic composition of rhizosphere soil communities was determined through 16S rRNA amplicon sequencing and community functionality was predicted through PICRUSt2. Results Site-specific trace metal distribution across the site drove plant species distribution in the highly contaminated soil, with Lotus tenuis and Diplotaxis muralis associated with higher Hg concentrations. In addition, for the bacterial communities in the rhizosphere soil of D. muralis , there was no observable decrease in alpha diversity with increasing soil Hg levels. Notably, Actinomycetota had an average of 24% relative abundance in the rhizosphere communities that also tested positive for the presence of merA , whereas in the absence of merA the phylum’s relative abundance was approximately 2%. merA positive rhizosphere communities also displayed an inferred increase in ABC transporters. Conclusions The results suggest a dependence of species-wise plant survival on local trace metal levels in soil, as well as an intricate interplay of the latter with rhizosphere bacterial diversity. Knowledge of these interdependencies could have implications for phytoremediation stakeholders, as it may allow for the selection of plant species and appropriate soil microbial inoculates with elevated Hg tolerance.</description><subject>Abundance</subject><subject>Agriculture</subject><subject>Alpha rays</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Diplotaxis muralis</subject><subject>Ecology</subject><subject>Environmental health</subject><subject>Flowers &amp; plants</subject><subject>Geographical distribution</subject><subject>Health risks</subject><subject>Heavy metals</subject><subject>Indigenous plants</subject><subject>Indigenous species</subject><subject>Life Sciences</subject><subject>Mercury</subject><subject>Metal concentrations</subject><subject>Microorganisms</subject><subject>Phytoremediation</subject><subject>Plant layout</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Relative abundance</subject><subject>Research Article</subject><subject>Rhizosphere</subject><subject>rRNA 16S</subject><subject>Soil analysis</subject><subject>Soil contamination</subject><subject>Soil microorganisms</subject><subject>Soil pollution</subject><subject>Soil Science &amp; Conservation</subject><subject>Spectrometry</subject><subject>Trace metals</subject><subject>X-ray fluorescence</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPA8-ok2d3sepPiPyjoQcFbmM3O2i3tpibpoX56067gzcMwzPB7b4bH2KWAawGgb4IQAvIMZKqyKGSmj9hEFFplBajymE0AlMxA1x-n7CyEJexnUU4Yvq5wiNy6lRv6b_KBu44jX5O3W79L-yHiuh8wUstDH-mWR4-WEhBxFTgOLccQnO0PhF_03y5sFuSJN2gj-R7P2UmXULr47VP2_nD_NnvK5i-Pz7O7eWaVyGOWF6qxTdWWQmlZaSGtbSHv0p-lBmm1bDQhEeYV1IqaBitbN11JCLZQWgk1ZVej78a7ry2FaJZu64d00igBVV7qulCJkiNlvQvBU2c2vl-j3xkBZh-lGaM0KUpziNLoJFKjKCR4-CT_Z_2P6gffMHfa</recordid><startdate>20240316</startdate><enddate>20240316</enddate><creator>Tiodar, Emanuela D.</creator><creator>Chiriac, Cecilia M.</creator><creator>Pošćić, Filip</creator><creator>Văcar, Cristina L.</creator><creator>Balázs, Zoltan R.</creator><creator>Coman, Cristian</creator><creator>Weindorf, David C.</creator><creator>Banciu, Manuela</creator><creator>Krämer, Ute</creator><creator>Podar, Dorina</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3814-825X</orcidid><orcidid>https://orcid.org/0000-0001-8188-6154</orcidid><orcidid>https://orcid.org/0000-0003-2556-4008</orcidid><orcidid>https://orcid.org/0000-0002-5964-1932</orcidid><orcidid>https://orcid.org/0000-0003-3082-402X</orcidid><orcidid>https://orcid.org/0000-0001-5130-5232</orcidid><orcidid>https://orcid.org/0000-0002-6642-1532</orcidid><orcidid>https://orcid.org/0000-0002-0955-7425</orcidid><orcidid>https://orcid.org/0000-0001-7870-4508</orcidid><orcidid>https://orcid.org/0009-0006-5947-2610</orcidid></search><sort><creationdate>20240316</creationdate><title>Plant colonizers of a mercury contaminated site: trace metals and associated rhizosphere bacteria</title><author>Tiodar, Emanuela D. ; Chiriac, Cecilia M. ; Pošćić, Filip ; Văcar, Cristina L. ; Balázs, Zoltan R. ; Coman, Cristian ; Weindorf, David C. ; Banciu, Manuela ; Krämer, Ute ; Podar, Dorina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-453bcb8d613728712ccd04f0036702c72b7eaeea48093ebba8c9bf6ea0c537313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abundance</topic><topic>Agriculture</topic><topic>Alpha rays</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Diplotaxis muralis</topic><topic>Ecology</topic><topic>Environmental health</topic><topic>Flowers &amp; plants</topic><topic>Geographical distribution</topic><topic>Health risks</topic><topic>Heavy metals</topic><topic>Indigenous plants</topic><topic>Indigenous species</topic><topic>Life Sciences</topic><topic>Mercury</topic><topic>Metal concentrations</topic><topic>Microorganisms</topic><topic>Phytoremediation</topic><topic>Plant layout</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Relative abundance</topic><topic>Research Article</topic><topic>Rhizosphere</topic><topic>rRNA 16S</topic><topic>Soil analysis</topic><topic>Soil contamination</topic><topic>Soil microorganisms</topic><topic>Soil pollution</topic><topic>Soil Science &amp; Conservation</topic><topic>Spectrometry</topic><topic>Trace metals</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiodar, Emanuela D.</creatorcontrib><creatorcontrib>Chiriac, Cecilia M.</creatorcontrib><creatorcontrib>Pošćić, Filip</creatorcontrib><creatorcontrib>Văcar, Cristina L.</creatorcontrib><creatorcontrib>Balázs, Zoltan R.</creatorcontrib><creatorcontrib>Coman, Cristian</creatorcontrib><creatorcontrib>Weindorf, David C.</creatorcontrib><creatorcontrib>Banciu, Manuela</creatorcontrib><creatorcontrib>Krämer, Ute</creatorcontrib><creatorcontrib>Podar, Dorina</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiodar, Emanuela D.</au><au>Chiriac, Cecilia M.</au><au>Pošćić, Filip</au><au>Văcar, Cristina L.</au><au>Balázs, Zoltan R.</au><au>Coman, Cristian</au><au>Weindorf, David C.</au><au>Banciu, Manuela</au><au>Krämer, Ute</au><au>Podar, Dorina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant colonizers of a mercury contaminated site: trace metals and associated rhizosphere bacteria</atitle><jtitle>Plant and soil</jtitle><stitle>Plant Soil</stitle><date>2024-03-16</date><risdate>2024</risdate><volume>502</volume><issue>1-2</issue><spage>373</spage><epage>396</epage><pages>373-396</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><abstract>Background and aims Mercury (Hg) contamination poses severe human and environmental health risks. We aimed to evaluate the colonization of Hg-contaminated sites by native plants and the prokaryotic composition of rhizosphere soil communities of the dominant plant species. Methods A field study was conducted at a Hg-contaminated site in Romania. Metal concentrations in soil and plant samples were analyzed using portable X-ray fluorescence spectrometry. The prokaryotic composition of rhizosphere soil communities was determined through 16S rRNA amplicon sequencing and community functionality was predicted through PICRUSt2. Results Site-specific trace metal distribution across the site drove plant species distribution in the highly contaminated soil, with Lotus tenuis and Diplotaxis muralis associated with higher Hg concentrations. In addition, for the bacterial communities in the rhizosphere soil of D. muralis , there was no observable decrease in alpha diversity with increasing soil Hg levels. Notably, Actinomycetota had an average of 24% relative abundance in the rhizosphere communities that also tested positive for the presence of merA , whereas in the absence of merA the phylum’s relative abundance was approximately 2%. merA positive rhizosphere communities also displayed an inferred increase in ABC transporters. Conclusions The results suggest a dependence of species-wise plant survival on local trace metal levels in soil, as well as an intricate interplay of the latter with rhizosphere bacterial diversity. Knowledge of these interdependencies could have implications for phytoremediation stakeholders, as it may allow for the selection of plant species and appropriate soil microbial inoculates with elevated Hg tolerance.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11104-024-06552-7</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-3814-825X</orcidid><orcidid>https://orcid.org/0000-0001-8188-6154</orcidid><orcidid>https://orcid.org/0000-0003-2556-4008</orcidid><orcidid>https://orcid.org/0000-0002-5964-1932</orcidid><orcidid>https://orcid.org/0000-0003-3082-402X</orcidid><orcidid>https://orcid.org/0000-0001-5130-5232</orcidid><orcidid>https://orcid.org/0000-0002-6642-1532</orcidid><orcidid>https://orcid.org/0000-0002-0955-7425</orcidid><orcidid>https://orcid.org/0000-0001-7870-4508</orcidid><orcidid>https://orcid.org/0009-0006-5947-2610</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-079X
ispartof Plant and soil, 2024-03, Vol.502 (1-2), p.373-396
issn 0032-079X
1573-5036
language eng
recordid cdi_proquest_journals_3108467953
source SpringerNature Journals
subjects Abundance
Agriculture
Alpha rays
Bacteria
Biomedical and Life Sciences
Diplotaxis muralis
Ecology
Environmental health
Flowers & plants
Geographical distribution
Health risks
Heavy metals
Indigenous plants
Indigenous species
Life Sciences
Mercury
Metal concentrations
Microorganisms
Phytoremediation
Plant layout
Plant Physiology
Plant Sciences
Plant species
Relative abundance
Research Article
Rhizosphere
rRNA 16S
Soil analysis
Soil contamination
Soil microorganisms
Soil pollution
Soil Science & Conservation
Spectrometry
Trace metals
X-ray fluorescence
title Plant colonizers of a mercury contaminated site: trace metals and associated rhizosphere bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20colonizers%20of%20a%20mercury%20contaminated%20site:%20trace%20metals%20and%20associated%20rhizosphere%20bacteria&rft.jtitle=Plant%20and%20soil&rft.au=Tiodar,%20Emanuela%20D.&rft.date=2024-03-16&rft.volume=502&rft.issue=1-2&rft.spage=373&rft.epage=396&rft.pages=373-396&rft.issn=0032-079X&rft.eissn=1573-5036&rft_id=info:doi/10.1007/s11104-024-06552-7&rft_dat=%3Cproquest_cross%3E3108467953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108467953&rft_id=info:pmid/&rfr_iscdi=true