Application of expectation–maximization algorithm to estimate random walk process noise for GNSS tropospheric delay

GNSS (Global Navigation Satellite Systems) tropospheric delay, specifically zenith wet delay (ZWD), shows clear spatial–temporal variations and is usually modeled as RWPN (random walk process noise). However, because RWPN does not take the geographical position of GNSS stations and local weather con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GPS solutions 2024-10, Vol.28 (4), p.204, Article 204
Hauptverfasser: Zhang, Xinggang, Li, Pan, Wang, Miaomiao, Ge, Maorong, Schuh, Harald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 204
container_title GPS solutions
container_volume 28
creator Zhang, Xinggang
Li, Pan
Wang, Miaomiao
Ge, Maorong
Schuh, Harald
description GNSS (Global Navigation Satellite Systems) tropospheric delay, specifically zenith wet delay (ZWD), shows clear spatial–temporal variations and is usually modeled as RWPN (random walk process noise). However, because RWPN does not take the geographical position of GNSS stations and local weather conditions into account for precise point positioning (PPP), it may lead to biased ZWD estimates. To address the scientific problem and improve ZWD estimates, we adopt the Expectation–Maximization algorithm (EM algorithm) to validate the feasibility of estimating RWPN using only GNSS measurements. Numerical experiments reveal that using only GNSS observations is capable of determining the RWPN parameter, although it could take several days to reach a stable solution if the initial guess deviates far away from the truth. It is also shown that estimating RWPN can almost always effectively improve ZWD estimates by several millimeters in contrast with traditional PPP results. If the ambiguities are fixed to their integer values correctly, the accuracy of RWPN estimates for ZWD can be greatly reduced by 2 mm / hour .
doi_str_mv 10.1007/s10291-024-01714-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3108456133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108456133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-407eb6e3c4d3ea1298d64ce43fdd51b501bdea3b5350a809e9b39b218862e93d3</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhiMEEqVwAVaWWAfGj7yWVQUFqYJFYW05zqRNSeJgp6JlxR24ISfBbZDYsZoZzf_P4wuCSwrXFCC5cRRYRkNgIgSaUBEmR8GIRoyGNE3jY59DCmHEEzgNzpxbAzDIMjEKNpOuqyut-sq0xJQEtx3q_lB-f341als11cfQVfXS2KpfNaQ3BF1fNapHYlVbmIa8q_qVdNZodI60pnJISmPJ7HGxIL01nXHdCm2lSYG12p0HJ6WqHV78xnHwcnf7PL0P50-zh-lkHmoG0IcCEsxj5FoUHBVlWVrEQqPgZVFENI-A5gUqnkc8ApVChlnOs5ztX2aY8YKPg6thrr_sbeNvlmuzsa1fKbknIqKYcu5VbFBpa5yzWMrO-ufsTlKQe7xywCs9XnnAKxNv4oPJeXG7RPs3-h_XD04cgLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108456133</pqid></control><display><type>article</type><title>Application of expectation–maximization algorithm to estimate random walk process noise for GNSS tropospheric delay</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Xinggang ; Li, Pan ; Wang, Miaomiao ; Ge, Maorong ; Schuh, Harald</creator><creatorcontrib>Zhang, Xinggang ; Li, Pan ; Wang, Miaomiao ; Ge, Maorong ; Schuh, Harald</creatorcontrib><description>GNSS (Global Navigation Satellite Systems) tropospheric delay, specifically zenith wet delay (ZWD), shows clear spatial–temporal variations and is usually modeled as RWPN (random walk process noise). However, because RWPN does not take the geographical position of GNSS stations and local weather conditions into account for precise point positioning (PPP), it may lead to biased ZWD estimates. To address the scientific problem and improve ZWD estimates, we adopt the Expectation–Maximization algorithm (EM algorithm) to validate the feasibility of estimating RWPN using only GNSS measurements. Numerical experiments reveal that using only GNSS observations is capable of determining the RWPN parameter, although it could take several days to reach a stable solution if the initial guess deviates far away from the truth. It is also shown that estimating RWPN can almost always effectively improve ZWD estimates by several millimeters in contrast with traditional PPP results. If the ambiguities are fixed to their integer values correctly, the accuracy of RWPN estimates for ZWD can be greatly reduced by 2 mm / hour .</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-024-01714-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Atmospheric Sciences ; Automotive Engineering ; Delay ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Estimates ; Geophysics/Geodesy ; Global navigation satellite system ; Maximization ; Optimization ; Original Article ; Parameter estimation ; Position measurement ; Random walk ; Satellite observation ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Troposphere ; Weather</subject><ispartof>GPS solutions, 2024-10, Vol.28 (4), p.204, Article 204</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-407eb6e3c4d3ea1298d64ce43fdd51b501bdea3b5350a809e9b39b218862e93d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10291-024-01714-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10291-024-01714-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zhang, Xinggang</creatorcontrib><creatorcontrib>Li, Pan</creatorcontrib><creatorcontrib>Wang, Miaomiao</creatorcontrib><creatorcontrib>Ge, Maorong</creatorcontrib><creatorcontrib>Schuh, Harald</creatorcontrib><title>Application of expectation–maximization algorithm to estimate random walk process noise for GNSS tropospheric delay</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>GNSS (Global Navigation Satellite Systems) tropospheric delay, specifically zenith wet delay (ZWD), shows clear spatial–temporal variations and is usually modeled as RWPN (random walk process noise). However, because RWPN does not take the geographical position of GNSS stations and local weather conditions into account for precise point positioning (PPP), it may lead to biased ZWD estimates. To address the scientific problem and improve ZWD estimates, we adopt the Expectation–Maximization algorithm (EM algorithm) to validate the feasibility of estimating RWPN using only GNSS measurements. Numerical experiments reveal that using only GNSS observations is capable of determining the RWPN parameter, although it could take several days to reach a stable solution if the initial guess deviates far away from the truth. It is also shown that estimating RWPN can almost always effectively improve ZWD estimates by several millimeters in contrast with traditional PPP results. If the ambiguities are fixed to their integer values correctly, the accuracy of RWPN estimates for ZWD can be greatly reduced by 2 mm / hour .</description><subject>Algorithms</subject><subject>Atmospheric Sciences</subject><subject>Automotive Engineering</subject><subject>Delay</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Estimates</subject><subject>Geophysics/Geodesy</subject><subject>Global navigation satellite system</subject><subject>Maximization</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Parameter estimation</subject><subject>Position measurement</subject><subject>Random walk</subject><subject>Satellite observation</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Troposphere</subject><subject>Weather</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhiMEEqVwAVaWWAfGj7yWVQUFqYJFYW05zqRNSeJgp6JlxR24ISfBbZDYsZoZzf_P4wuCSwrXFCC5cRRYRkNgIgSaUBEmR8GIRoyGNE3jY59DCmHEEzgNzpxbAzDIMjEKNpOuqyut-sq0xJQEtx3q_lB-f341als11cfQVfXS2KpfNaQ3BF1fNapHYlVbmIa8q_qVdNZodI60pnJISmPJ7HGxIL01nXHdCm2lSYG12p0HJ6WqHV78xnHwcnf7PL0P50-zh-lkHmoG0IcCEsxj5FoUHBVlWVrEQqPgZVFENI-A5gUqnkc8ApVChlnOs5ztX2aY8YKPg6thrr_sbeNvlmuzsa1fKbknIqKYcu5VbFBpa5yzWMrO-ufsTlKQe7xywCs9XnnAKxNv4oPJeXG7RPs3-h_XD04cgLk</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhang, Xinggang</creator><creator>Li, Pan</creator><creator>Wang, Miaomiao</creator><creator>Ge, Maorong</creator><creator>Schuh, Harald</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241001</creationdate><title>Application of expectation–maximization algorithm to estimate random walk process noise for GNSS tropospheric delay</title><author>Zhang, Xinggang ; Li, Pan ; Wang, Miaomiao ; Ge, Maorong ; Schuh, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-407eb6e3c4d3ea1298d64ce43fdd51b501bdea3b5350a809e9b39b218862e93d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Atmospheric Sciences</topic><topic>Automotive Engineering</topic><topic>Delay</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Estimates</topic><topic>Geophysics/Geodesy</topic><topic>Global navigation satellite system</topic><topic>Maximization</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Parameter estimation</topic><topic>Position measurement</topic><topic>Random walk</topic><topic>Satellite observation</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Troposphere</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinggang</creatorcontrib><creatorcontrib>Li, Pan</creatorcontrib><creatorcontrib>Wang, Miaomiao</creatorcontrib><creatorcontrib>Ge, Maorong</creatorcontrib><creatorcontrib>Schuh, Harald</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xinggang</au><au>Li, Pan</au><au>Wang, Miaomiao</au><au>Ge, Maorong</au><au>Schuh, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of expectation–maximization algorithm to estimate random walk process noise for GNSS tropospheric delay</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>28</volume><issue>4</issue><spage>204</spage><pages>204-</pages><artnum>204</artnum><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>GNSS (Global Navigation Satellite Systems) tropospheric delay, specifically zenith wet delay (ZWD), shows clear spatial–temporal variations and is usually modeled as RWPN (random walk process noise). However, because RWPN does not take the geographical position of GNSS stations and local weather conditions into account for precise point positioning (PPP), it may lead to biased ZWD estimates. To address the scientific problem and improve ZWD estimates, we adopt the Expectation–Maximization algorithm (EM algorithm) to validate the feasibility of estimating RWPN using only GNSS measurements. Numerical experiments reveal that using only GNSS observations is capable of determining the RWPN parameter, although it could take several days to reach a stable solution if the initial guess deviates far away from the truth. It is also shown that estimating RWPN can almost always effectively improve ZWD estimates by several millimeters in contrast with traditional PPP results. If the ambiguities are fixed to their integer values correctly, the accuracy of RWPN estimates for ZWD can be greatly reduced by 2 mm / hour .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10291-024-01714-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 1080-5370
ispartof GPS solutions, 2024-10, Vol.28 (4), p.204, Article 204
issn 1080-5370
1521-1886
language eng
recordid cdi_proquest_journals_3108456133
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Atmospheric Sciences
Automotive Engineering
Delay
Earth and Environmental Science
Earth Sciences
Electrical Engineering
Estimates
Geophysics/Geodesy
Global navigation satellite system
Maximization
Optimization
Original Article
Parameter estimation
Position measurement
Random walk
Satellite observation
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Troposphere
Weather
title Application of expectation–maximization algorithm to estimate random walk process noise for GNSS tropospheric delay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20expectation%E2%80%93maximization%20algorithm%20to%20estimate%20random%20walk%20process%20noise%20for%20GNSS%20tropospheric%20delay&rft.jtitle=GPS%20solutions&rft.au=Zhang,%20Xinggang&rft.date=2024-10-01&rft.volume=28&rft.issue=4&rft.spage=204&rft.pages=204-&rft.artnum=204&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-024-01714-7&rft_dat=%3Cproquest_cross%3E3108456133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108456133&rft_id=info:pmid/&rfr_iscdi=true