Small activating RNA delivery in vivo: Challenges, prospects, and lessons learned from siRNA delivery

Over the last two decades, small activating RNAs (saRNAs) have quickly moved from discovery to clinical trials. Characterized as 20 nucleotide long, double stranded RNA, saRNAs have the unique ability to increase gene transcription at the chromatin level. This therapeutic modality has great potentia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2024-10, Vol.17 (10), p.8990-9002
Hauptverfasser: Pandey, Shalini, Bednarz, Patrick T., Oberli, Matthias A., Veiseh, Omid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9002
container_issue 10
container_start_page 8990
container_title Nano research
container_volume 17
creator Pandey, Shalini
Bednarz, Patrick T.
Oberli, Matthias A.
Veiseh, Omid
description Over the last two decades, small activating RNAs (saRNAs) have quickly moved from discovery to clinical trials. Characterized as 20 nucleotide long, double stranded RNA, saRNAs have the unique ability to increase gene transcription at the chromatin level. This therapeutic modality has great potential as a safe and redosable alternative to gene therapy by increasing target protein expression without changing the genetic sequence. We describe the successful in vivo saRNA delivery vectors and found that similar to small interfering RNA (siRNA) and mRNA targeting tissues outside the liver works best at the end of a needle. We highlight nanoparticle vectors and RNA-conjugates, where some success has been reported for non-hepatic delivery of saRNA-aptamers.
doi_str_mv 10.1007/s12274-024-6862-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3108455771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108455771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-7f01d91ac065688dea0c8f8535df3a0aee3d675596e347e4a883ad19c14b19853</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewsscXgSfwKu6riJVUg8VhbJp6UVGlS7BCpf4-rgGDDbGYW996ZOYScAr8AzvVlhCzTgvFMMGVUxsQemUBRGMZT7f_MkIlDchTjinOVgTATgs9r1zTUlX09uL5ul_TpYUY9NvWAYUvrlg710F3R-XuSYbvEeE43oYsbLPs0utbTBmPs2pi6Cy16WoVuTWP9N-eYHFSuiXjy3afk9eb6ZX7HFo-39_PZgpVQmJ7pioMvwJVcSWWMR8dLUxmZS1_ljjvE3CstZaEwFxqFMyZ3HooSxFsKkPmUnI256cSPT4y9XXWfoU0rbQ7cCCm1hqSCUVWmR2LAym5CvXZha4HbHU070rSJpt3RtCJ5stETkzZhCL_J_5u-AFLAd1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108455771</pqid></control><display><type>article</type><title>Small activating RNA delivery in vivo: Challenges, prospects, and lessons learned from siRNA delivery</title><source>SpringerLink Journals</source><creator>Pandey, Shalini ; Bednarz, Patrick T. ; Oberli, Matthias A. ; Veiseh, Omid</creator><creatorcontrib>Pandey, Shalini ; Bednarz, Patrick T. ; Oberli, Matthias A. ; Veiseh, Omid</creatorcontrib><description>Over the last two decades, small activating RNAs (saRNAs) have quickly moved from discovery to clinical trials. Characterized as 20 nucleotide long, double stranded RNA, saRNAs have the unique ability to increase gene transcription at the chromatin level. This therapeutic modality has great potential as a safe and redosable alternative to gene therapy by increasing target protein expression without changing the genetic sequence. We describe the successful in vivo saRNA delivery vectors and found that similar to small interfering RNA (siRNA) and mRNA targeting tissues outside the liver works best at the end of a needle. We highlight nanoparticle vectors and RNA-conjugates, where some success has been reported for non-hepatic delivery of saRNA-aptamers.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-024-6862-4</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Amino acid sequence ; Aptamers ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Chromatin ; Clinical trials ; Condensed Matter Physics ; Double-stranded RNA ; Epigenetics ; Expression vectors ; Gene expression ; Gene therapy ; Materials Science ; Nanoparticles ; Nanotechnology ; Nucleotide sequence ; Nucleotides ; Proteins ; Review Article ; Ribonucleic acid ; RNA ; RNA polymerase ; siRNA</subject><ispartof>Nano research, 2024-10, Vol.17 (10), p.8990-9002</ispartof><rights>Tsinghua University Press 2024</rights><rights>Tsinghua University Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-7f01d91ac065688dea0c8f8535df3a0aee3d675596e347e4a883ad19c14b19853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-024-6862-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-024-6862-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pandey, Shalini</creatorcontrib><creatorcontrib>Bednarz, Patrick T.</creatorcontrib><creatorcontrib>Oberli, Matthias A.</creatorcontrib><creatorcontrib>Veiseh, Omid</creatorcontrib><title>Small activating RNA delivery in vivo: Challenges, prospects, and lessons learned from siRNA delivery</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Over the last two decades, small activating RNAs (saRNAs) have quickly moved from discovery to clinical trials. Characterized as 20 nucleotide long, double stranded RNA, saRNAs have the unique ability to increase gene transcription at the chromatin level. This therapeutic modality has great potential as a safe and redosable alternative to gene therapy by increasing target protein expression without changing the genetic sequence. We describe the successful in vivo saRNA delivery vectors and found that similar to small interfering RNA (siRNA) and mRNA targeting tissues outside the liver works best at the end of a needle. We highlight nanoparticle vectors and RNA-conjugates, where some success has been reported for non-hepatic delivery of saRNA-aptamers.</description><subject>Amino acid sequence</subject><subject>Aptamers</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Chromatin</subject><subject>Clinical trials</subject><subject>Condensed Matter Physics</subject><subject>Double-stranded RNA</subject><subject>Epigenetics</subject><subject>Expression vectors</subject><subject>Gene expression</subject><subject>Gene therapy</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nucleotide sequence</subject><subject>Nucleotides</subject><subject>Proteins</subject><subject>Review Article</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>siRNA</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewsscXgSfwKu6riJVUg8VhbJp6UVGlS7BCpf4-rgGDDbGYW996ZOYScAr8AzvVlhCzTgvFMMGVUxsQemUBRGMZT7f_MkIlDchTjinOVgTATgs9r1zTUlX09uL5ul_TpYUY9NvWAYUvrlg710F3R-XuSYbvEeE43oYsbLPs0utbTBmPs2pi6Cy16WoVuTWP9N-eYHFSuiXjy3afk9eb6ZX7HFo-39_PZgpVQmJ7pioMvwJVcSWWMR8dLUxmZS1_ljjvE3CstZaEwFxqFMyZ3HooSxFsKkPmUnI256cSPT4y9XXWfoU0rbQ7cCCm1hqSCUVWmR2LAym5CvXZha4HbHU070rSJpt3RtCJ5stETkzZhCL_J_5u-AFLAd1g</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Pandey, Shalini</creator><creator>Bednarz, Patrick T.</creator><creator>Oberli, Matthias A.</creator><creator>Veiseh, Omid</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20241001</creationdate><title>Small activating RNA delivery in vivo: Challenges, prospects, and lessons learned from siRNA delivery</title><author>Pandey, Shalini ; Bednarz, Patrick T. ; Oberli, Matthias A. ; Veiseh, Omid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-7f01d91ac065688dea0c8f8535df3a0aee3d675596e347e4a883ad19c14b19853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acid sequence</topic><topic>Aptamers</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Chromatin</topic><topic>Clinical trials</topic><topic>Condensed Matter Physics</topic><topic>Double-stranded RNA</topic><topic>Epigenetics</topic><topic>Expression vectors</topic><topic>Gene expression</topic><topic>Gene therapy</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nucleotide sequence</topic><topic>Nucleotides</topic><topic>Proteins</topic><topic>Review Article</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>siRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Shalini</creatorcontrib><creatorcontrib>Bednarz, Patrick T.</creatorcontrib><creatorcontrib>Oberli, Matthias A.</creatorcontrib><creatorcontrib>Veiseh, Omid</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Shalini</au><au>Bednarz, Patrick T.</au><au>Oberli, Matthias A.</au><au>Veiseh, Omid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small activating RNA delivery in vivo: Challenges, prospects, and lessons learned from siRNA delivery</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>17</volume><issue>10</issue><spage>8990</spage><epage>9002</epage><pages>8990-9002</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Over the last two decades, small activating RNAs (saRNAs) have quickly moved from discovery to clinical trials. Characterized as 20 nucleotide long, double stranded RNA, saRNAs have the unique ability to increase gene transcription at the chromatin level. This therapeutic modality has great potential as a safe and redosable alternative to gene therapy by increasing target protein expression without changing the genetic sequence. We describe the successful in vivo saRNA delivery vectors and found that similar to small interfering RNA (siRNA) and mRNA targeting tissues outside the liver works best at the end of a needle. We highlight nanoparticle vectors and RNA-conjugates, where some success has been reported for non-hepatic delivery of saRNA-aptamers.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-024-6862-4</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2024-10, Vol.17 (10), p.8990-9002
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_3108455771
source SpringerLink Journals
subjects Amino acid sequence
Aptamers
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Chromatin
Clinical trials
Condensed Matter Physics
Double-stranded RNA
Epigenetics
Expression vectors
Gene expression
Gene therapy
Materials Science
Nanoparticles
Nanotechnology
Nucleotide sequence
Nucleotides
Proteins
Review Article
Ribonucleic acid
RNA
RNA polymerase
siRNA
title Small activating RNA delivery in vivo: Challenges, prospects, and lessons learned from siRNA delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20activating%20RNA%20delivery%20in%20vivo:%20Challenges,%20prospects,%20and%20lessons%20learned%20from%20siRNA%20delivery&rft.jtitle=Nano%20research&rft.au=Pandey,%20Shalini&rft.date=2024-10-01&rft.volume=17&rft.issue=10&rft.spage=8990&rft.epage=9002&rft.pages=8990-9002&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-024-6862-4&rft_dat=%3Cproquest_cross%3E3108455771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108455771&rft_id=info:pmid/&rfr_iscdi=true