Small activating RNA delivery in vivo: Challenges, prospects, and lessons learned from siRNA delivery
Over the last two decades, small activating RNAs (saRNAs) have quickly moved from discovery to clinical trials. Characterized as 20 nucleotide long, double stranded RNA, saRNAs have the unique ability to increase gene transcription at the chromatin level. This therapeutic modality has great potentia...
Gespeichert in:
Veröffentlicht in: | Nano research 2024-10, Vol.17 (10), p.8990-9002 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9002 |
---|---|
container_issue | 10 |
container_start_page | 8990 |
container_title | Nano research |
container_volume | 17 |
creator | Pandey, Shalini Bednarz, Patrick T. Oberli, Matthias A. Veiseh, Omid |
description | Over the last two decades, small activating RNAs (saRNAs) have quickly moved from discovery to clinical trials. Characterized as 20 nucleotide long, double stranded RNA, saRNAs have the unique ability to increase gene transcription at the chromatin level. This therapeutic modality has great potential as a safe and redosable alternative to gene therapy by increasing target protein expression without changing the genetic sequence. We describe the successful
in vivo
saRNA delivery vectors and found that similar to small interfering RNA (siRNA) and mRNA targeting tissues outside the liver works best at the end of a needle. We highlight nanoparticle vectors and RNA-conjugates, where some success has been reported for non-hepatic delivery of saRNA-aptamers. |
doi_str_mv | 10.1007/s12274-024-6862-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3108455771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108455771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-7f01d91ac065688dea0c8f8535df3a0aee3d675596e347e4a883ad19c14b19853</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewsscXgSfwKu6riJVUg8VhbJp6UVGlS7BCpf4-rgGDDbGYW996ZOYScAr8AzvVlhCzTgvFMMGVUxsQemUBRGMZT7f_MkIlDchTjinOVgTATgs9r1zTUlX09uL5ul_TpYUY9NvWAYUvrlg710F3R-XuSYbvEeE43oYsbLPs0utbTBmPs2pi6Cy16WoVuTWP9N-eYHFSuiXjy3afk9eb6ZX7HFo-39_PZgpVQmJ7pioMvwJVcSWWMR8dLUxmZS1_ljjvE3CstZaEwFxqFMyZ3HooSxFsKkPmUnI256cSPT4y9XXWfoU0rbQ7cCCm1hqSCUVWmR2LAym5CvXZha4HbHU070rSJpt3RtCJ5stETkzZhCL_J_5u-AFLAd1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108455771</pqid></control><display><type>article</type><title>Small activating RNA delivery in vivo: Challenges, prospects, and lessons learned from siRNA delivery</title><source>SpringerLink Journals</source><creator>Pandey, Shalini ; Bednarz, Patrick T. ; Oberli, Matthias A. ; Veiseh, Omid</creator><creatorcontrib>Pandey, Shalini ; Bednarz, Patrick T. ; Oberli, Matthias A. ; Veiseh, Omid</creatorcontrib><description>Over the last two decades, small activating RNAs (saRNAs) have quickly moved from discovery to clinical trials. Characterized as 20 nucleotide long, double stranded RNA, saRNAs have the unique ability to increase gene transcription at the chromatin level. This therapeutic modality has great potential as a safe and redosable alternative to gene therapy by increasing target protein expression without changing the genetic sequence. We describe the successful
in vivo
saRNA delivery vectors and found that similar to small interfering RNA (siRNA) and mRNA targeting tissues outside the liver works best at the end of a needle. We highlight nanoparticle vectors and RNA-conjugates, where some success has been reported for non-hepatic delivery of saRNA-aptamers.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-024-6862-4</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Amino acid sequence ; Aptamers ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Chromatin ; Clinical trials ; Condensed Matter Physics ; Double-stranded RNA ; Epigenetics ; Expression vectors ; Gene expression ; Gene therapy ; Materials Science ; Nanoparticles ; Nanotechnology ; Nucleotide sequence ; Nucleotides ; Proteins ; Review Article ; Ribonucleic acid ; RNA ; RNA polymerase ; siRNA</subject><ispartof>Nano research, 2024-10, Vol.17 (10), p.8990-9002</ispartof><rights>Tsinghua University Press 2024</rights><rights>Tsinghua University Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-7f01d91ac065688dea0c8f8535df3a0aee3d675596e347e4a883ad19c14b19853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-024-6862-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-024-6862-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pandey, Shalini</creatorcontrib><creatorcontrib>Bednarz, Patrick T.</creatorcontrib><creatorcontrib>Oberli, Matthias A.</creatorcontrib><creatorcontrib>Veiseh, Omid</creatorcontrib><title>Small activating RNA delivery in vivo: Challenges, prospects, and lessons learned from siRNA delivery</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Over the last two decades, small activating RNAs (saRNAs) have quickly moved from discovery to clinical trials. Characterized as 20 nucleotide long, double stranded RNA, saRNAs have the unique ability to increase gene transcription at the chromatin level. This therapeutic modality has great potential as a safe and redosable alternative to gene therapy by increasing target protein expression without changing the genetic sequence. We describe the successful
in vivo
saRNA delivery vectors and found that similar to small interfering RNA (siRNA) and mRNA targeting tissues outside the liver works best at the end of a needle. We highlight nanoparticle vectors and RNA-conjugates, where some success has been reported for non-hepatic delivery of saRNA-aptamers.</description><subject>Amino acid sequence</subject><subject>Aptamers</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Chromatin</subject><subject>Clinical trials</subject><subject>Condensed Matter Physics</subject><subject>Double-stranded RNA</subject><subject>Epigenetics</subject><subject>Expression vectors</subject><subject>Gene expression</subject><subject>Gene therapy</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nucleotide sequence</subject><subject>Nucleotides</subject><subject>Proteins</subject><subject>Review Article</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>siRNA</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewsscXgSfwKu6riJVUg8VhbJp6UVGlS7BCpf4-rgGDDbGYW996ZOYScAr8AzvVlhCzTgvFMMGVUxsQemUBRGMZT7f_MkIlDchTjinOVgTATgs9r1zTUlX09uL5ul_TpYUY9NvWAYUvrlg710F3R-XuSYbvEeE43oYsbLPs0utbTBmPs2pi6Cy16WoVuTWP9N-eYHFSuiXjy3afk9eb6ZX7HFo-39_PZgpVQmJ7pioMvwJVcSWWMR8dLUxmZS1_ljjvE3CstZaEwFxqFMyZ3HooSxFsKkPmUnI256cSPT4y9XXWfoU0rbQ7cCCm1hqSCUVWmR2LAym5CvXZha4HbHU070rSJpt3RtCJ5stETkzZhCL_J_5u-AFLAd1g</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Pandey, Shalini</creator><creator>Bednarz, Patrick T.</creator><creator>Oberli, Matthias A.</creator><creator>Veiseh, Omid</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20241001</creationdate><title>Small activating RNA delivery in vivo: Challenges, prospects, and lessons learned from siRNA delivery</title><author>Pandey, Shalini ; Bednarz, Patrick T. ; Oberli, Matthias A. ; Veiseh, Omid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-7f01d91ac065688dea0c8f8535df3a0aee3d675596e347e4a883ad19c14b19853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acid sequence</topic><topic>Aptamers</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Chromatin</topic><topic>Clinical trials</topic><topic>Condensed Matter Physics</topic><topic>Double-stranded RNA</topic><topic>Epigenetics</topic><topic>Expression vectors</topic><topic>Gene expression</topic><topic>Gene therapy</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nucleotide sequence</topic><topic>Nucleotides</topic><topic>Proteins</topic><topic>Review Article</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>siRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Shalini</creatorcontrib><creatorcontrib>Bednarz, Patrick T.</creatorcontrib><creatorcontrib>Oberli, Matthias A.</creatorcontrib><creatorcontrib>Veiseh, Omid</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Shalini</au><au>Bednarz, Patrick T.</au><au>Oberli, Matthias A.</au><au>Veiseh, Omid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small activating RNA delivery in vivo: Challenges, prospects, and lessons learned from siRNA delivery</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>17</volume><issue>10</issue><spage>8990</spage><epage>9002</epage><pages>8990-9002</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Over the last two decades, small activating RNAs (saRNAs) have quickly moved from discovery to clinical trials. Characterized as 20 nucleotide long, double stranded RNA, saRNAs have the unique ability to increase gene transcription at the chromatin level. This therapeutic modality has great potential as a safe and redosable alternative to gene therapy by increasing target protein expression without changing the genetic sequence. We describe the successful
in vivo
saRNA delivery vectors and found that similar to small interfering RNA (siRNA) and mRNA targeting tissues outside the liver works best at the end of a needle. We highlight nanoparticle vectors and RNA-conjugates, where some success has been reported for non-hepatic delivery of saRNA-aptamers.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-024-6862-4</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2024-10, Vol.17 (10), p.8990-9002 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_3108455771 |
source | SpringerLink Journals |
subjects | Amino acid sequence Aptamers Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Chromatin Clinical trials Condensed Matter Physics Double-stranded RNA Epigenetics Expression vectors Gene expression Gene therapy Materials Science Nanoparticles Nanotechnology Nucleotide sequence Nucleotides Proteins Review Article Ribonucleic acid RNA RNA polymerase siRNA |
title | Small activating RNA delivery in vivo: Challenges, prospects, and lessons learned from siRNA delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20activating%20RNA%20delivery%20in%20vivo:%20Challenges,%20prospects,%20and%20lessons%20learned%20from%20siRNA%20delivery&rft.jtitle=Nano%20research&rft.au=Pandey,%20Shalini&rft.date=2024-10-01&rft.volume=17&rft.issue=10&rft.spage=8990&rft.epage=9002&rft.pages=8990-9002&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-024-6862-4&rft_dat=%3Cproquest_cross%3E3108455771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108455771&rft_id=info:pmid/&rfr_iscdi=true |