Accelerating Quantum Eigensolver Algorithms With Machine Learning
In this paper, we explore accelerating Hamiltonian ground state energy calculation on NISQ devices. We suggest using search-based methods together with machine learning to accelerate quantum algorithms, exemplified in the Quantum Eigensolver use case. We trained two small models on classically mined...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bensoussan, Avner Chachkarova, Elena Even-Mendoza, Karine tz, Sophie Lenihan, Connor |
description | In this paper, we explore accelerating Hamiltonian ground state energy calculation on NISQ devices. We suggest using search-based methods together with machine learning to accelerate quantum algorithms, exemplified in the Quantum Eigensolver use case. We trained two small models on classically mined data from systems with up to 16 qubits, using XGBoost's Python regressor. We evaluated our preliminary approach on 20-, 24- and 28-qubit systems by optimising the Eigensolver's hyperparameters. These models predict hyperparameter values, leading to a 0.13\%-0.15\% reduction in error when tested on 28-qubit systems. However, due to inconclusive results with 20- and 24-qubit systems, we suggest further examination of the training data based on Hamiltonian characteristics. In future work, we plan to train machine learning models to optimise other aspects or subroutines of quantum algorithm execution beyond its hyperparameters. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3108441737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108441737</sourcerecordid><originalsourceid>FETCH-proquest_journals_31084417373</originalsourceid><addsrcrecordid>eNqNi70KwjAYAIMgWLTvEHAupElrugapOOggCI4llM80JU00Pz6_GXwApxvuboUKylhddQ2lG1SGMBNC6IHTtmUFEmIcwYCXUVuFb0namBbcawU2OPMBj4VRzus4LQE_MvBVjpO2gC8gvc3TDq2f0gQof9yi_am_H8_Vy7t3ghCH2SVvsxpYTbqmqTnj7L_qC5icOZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108441737</pqid></control><display><type>article</type><title>Accelerating Quantum Eigensolver Algorithms With Machine Learning</title><source>Free E- Journals</source><creator>Bensoussan, Avner ; Chachkarova, Elena ; Even-Mendoza, Karine ; tz, Sophie ; Lenihan, Connor</creator><creatorcontrib>Bensoussan, Avner ; Chachkarova, Elena ; Even-Mendoza, Karine ; tz, Sophie ; Lenihan, Connor</creatorcontrib><description>In this paper, we explore accelerating Hamiltonian ground state energy calculation on NISQ devices. We suggest using search-based methods together with machine learning to accelerate quantum algorithms, exemplified in the Quantum Eigensolver use case. We trained two small models on classically mined data from systems with up to 16 qubits, using XGBoost's Python regressor. We evaluated our preliminary approach on 20-, 24- and 28-qubit systems by optimising the Eigensolver's hyperparameters. These models predict hyperparameter values, leading to a 0.13\%-0.15\% reduction in error when tested on 28-qubit systems. However, due to inconclusive results with 20- and 24-qubit systems, we suggest further examination of the training data based on Hamiltonian characteristics. In future work, we plan to train machine learning models to optimise other aspects or subroutines of quantum algorithm execution beyond its hyperparameters.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Error reduction ; Machine learning ; Optimization ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bensoussan, Avner</creatorcontrib><creatorcontrib>Chachkarova, Elena</creatorcontrib><creatorcontrib>Even-Mendoza, Karine</creatorcontrib><creatorcontrib>tz, Sophie</creatorcontrib><creatorcontrib>Lenihan, Connor</creatorcontrib><title>Accelerating Quantum Eigensolver Algorithms With Machine Learning</title><title>arXiv.org</title><description>In this paper, we explore accelerating Hamiltonian ground state energy calculation on NISQ devices. We suggest using search-based methods together with machine learning to accelerate quantum algorithms, exemplified in the Quantum Eigensolver use case. We trained two small models on classically mined data from systems with up to 16 qubits, using XGBoost's Python regressor. We evaluated our preliminary approach on 20-, 24- and 28-qubit systems by optimising the Eigensolver's hyperparameters. These models predict hyperparameter values, leading to a 0.13\%-0.15\% reduction in error when tested on 28-qubit systems. However, due to inconclusive results with 20- and 24-qubit systems, we suggest further examination of the training data based on Hamiltonian characteristics. In future work, we plan to train machine learning models to optimise other aspects or subroutines of quantum algorithm execution beyond its hyperparameters.</description><subject>Algorithms</subject><subject>Error reduction</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70KwjAYAIMgWLTvEHAupElrugapOOggCI4llM80JU00Pz6_GXwApxvuboUKylhddQ2lG1SGMBNC6IHTtmUFEmIcwYCXUVuFb0namBbcawU2OPMBj4VRzus4LQE_MvBVjpO2gC8gvc3TDq2f0gQof9yi_am_H8_Vy7t3ghCH2SVvsxpYTbqmqTnj7L_qC5icOZ0</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Bensoussan, Avner</creator><creator>Chachkarova, Elena</creator><creator>Even-Mendoza, Karine</creator><creator>tz, Sophie</creator><creator>Lenihan, Connor</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240920</creationdate><title>Accelerating Quantum Eigensolver Algorithms With Machine Learning</title><author>Bensoussan, Avner ; Chachkarova, Elena ; Even-Mendoza, Karine ; tz, Sophie ; Lenihan, Connor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31084417373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Error reduction</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Bensoussan, Avner</creatorcontrib><creatorcontrib>Chachkarova, Elena</creatorcontrib><creatorcontrib>Even-Mendoza, Karine</creatorcontrib><creatorcontrib>tz, Sophie</creatorcontrib><creatorcontrib>Lenihan, Connor</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bensoussan, Avner</au><au>Chachkarova, Elena</au><au>Even-Mendoza, Karine</au><au>tz, Sophie</au><au>Lenihan, Connor</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Accelerating Quantum Eigensolver Algorithms With Machine Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-09-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we explore accelerating Hamiltonian ground state energy calculation on NISQ devices. We suggest using search-based methods together with machine learning to accelerate quantum algorithms, exemplified in the Quantum Eigensolver use case. We trained two small models on classically mined data from systems with up to 16 qubits, using XGBoost's Python regressor. We evaluated our preliminary approach on 20-, 24- and 28-qubit systems by optimising the Eigensolver's hyperparameters. These models predict hyperparameter values, leading to a 0.13\%-0.15\% reduction in error when tested on 28-qubit systems. However, due to inconclusive results with 20- and 24-qubit systems, we suggest further examination of the training data based on Hamiltonian characteristics. In future work, we plan to train machine learning models to optimise other aspects or subroutines of quantum algorithm execution beyond its hyperparameters.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3108441737 |
source | Free E- Journals |
subjects | Algorithms Error reduction Machine learning Optimization Qubits (quantum computing) |
title | Accelerating Quantum Eigensolver Algorithms With Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Accelerating%20Quantum%20Eigensolver%20Algorithms%20With%20Machine%20Learning&rft.jtitle=arXiv.org&rft.au=Bensoussan,%20Avner&rft.date=2024-09-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3108441737%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108441737&rft_id=info:pmid/&rfr_iscdi=true |