Accelerating Quantum Eigensolver Algorithms With Machine Learning

In this paper, we explore accelerating Hamiltonian ground state energy calculation on NISQ devices. We suggest using search-based methods together with machine learning to accelerate quantum algorithms, exemplified in the Quantum Eigensolver use case. We trained two small models on classically mined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Bensoussan, Avner, Chachkarova, Elena, Even-Mendoza, Karine, tz, Sophie, Lenihan, Connor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bensoussan, Avner
Chachkarova, Elena
Even-Mendoza, Karine
tz, Sophie
Lenihan, Connor
description In this paper, we explore accelerating Hamiltonian ground state energy calculation on NISQ devices. We suggest using search-based methods together with machine learning to accelerate quantum algorithms, exemplified in the Quantum Eigensolver use case. We trained two small models on classically mined data from systems with up to 16 qubits, using XGBoost's Python regressor. We evaluated our preliminary approach on 20-, 24- and 28-qubit systems by optimising the Eigensolver's hyperparameters. These models predict hyperparameter values, leading to a 0.13\%-0.15\% reduction in error when tested on 28-qubit systems. However, due to inconclusive results with 20- and 24-qubit systems, we suggest further examination of the training data based on Hamiltonian characteristics. In future work, we plan to train machine learning models to optimise other aspects or subroutines of quantum algorithm execution beyond its hyperparameters.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3108441737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108441737</sourcerecordid><originalsourceid>FETCH-proquest_journals_31084417373</originalsourceid><addsrcrecordid>eNqNi70KwjAYAIMgWLTvEHAupElrugapOOggCI4llM80JU00Pz6_GXwApxvuboUKylhddQ2lG1SGMBNC6IHTtmUFEmIcwYCXUVuFb0namBbcawU2OPMBj4VRzus4LQE_MvBVjpO2gC8gvc3TDq2f0gQof9yi_am_H8_Vy7t3ghCH2SVvsxpYTbqmqTnj7L_qC5icOZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108441737</pqid></control><display><type>article</type><title>Accelerating Quantum Eigensolver Algorithms With Machine Learning</title><source>Free E- Journals</source><creator>Bensoussan, Avner ; Chachkarova, Elena ; Even-Mendoza, Karine ; tz, Sophie ; Lenihan, Connor</creator><creatorcontrib>Bensoussan, Avner ; Chachkarova, Elena ; Even-Mendoza, Karine ; tz, Sophie ; Lenihan, Connor</creatorcontrib><description>In this paper, we explore accelerating Hamiltonian ground state energy calculation on NISQ devices. We suggest using search-based methods together with machine learning to accelerate quantum algorithms, exemplified in the Quantum Eigensolver use case. We trained two small models on classically mined data from systems with up to 16 qubits, using XGBoost's Python regressor. We evaluated our preliminary approach on 20-, 24- and 28-qubit systems by optimising the Eigensolver's hyperparameters. These models predict hyperparameter values, leading to a 0.13\%-0.15\% reduction in error when tested on 28-qubit systems. However, due to inconclusive results with 20- and 24-qubit systems, we suggest further examination of the training data based on Hamiltonian characteristics. In future work, we plan to train machine learning models to optimise other aspects or subroutines of quantum algorithm execution beyond its hyperparameters.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Error reduction ; Machine learning ; Optimization ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bensoussan, Avner</creatorcontrib><creatorcontrib>Chachkarova, Elena</creatorcontrib><creatorcontrib>Even-Mendoza, Karine</creatorcontrib><creatorcontrib>tz, Sophie</creatorcontrib><creatorcontrib>Lenihan, Connor</creatorcontrib><title>Accelerating Quantum Eigensolver Algorithms With Machine Learning</title><title>arXiv.org</title><description>In this paper, we explore accelerating Hamiltonian ground state energy calculation on NISQ devices. We suggest using search-based methods together with machine learning to accelerate quantum algorithms, exemplified in the Quantum Eigensolver use case. We trained two small models on classically mined data from systems with up to 16 qubits, using XGBoost's Python regressor. We evaluated our preliminary approach on 20-, 24- and 28-qubit systems by optimising the Eigensolver's hyperparameters. These models predict hyperparameter values, leading to a 0.13\%-0.15\% reduction in error when tested on 28-qubit systems. However, due to inconclusive results with 20- and 24-qubit systems, we suggest further examination of the training data based on Hamiltonian characteristics. In future work, we plan to train machine learning models to optimise other aspects or subroutines of quantum algorithm execution beyond its hyperparameters.</description><subject>Algorithms</subject><subject>Error reduction</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70KwjAYAIMgWLTvEHAupElrugapOOggCI4llM80JU00Pz6_GXwApxvuboUKylhddQ2lG1SGMBNC6IHTtmUFEmIcwYCXUVuFb0namBbcawU2OPMBj4VRzus4LQE_MvBVjpO2gC8gvc3TDq2f0gQof9yi_am_H8_Vy7t3ghCH2SVvsxpYTbqmqTnj7L_qC5icOZ0</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Bensoussan, Avner</creator><creator>Chachkarova, Elena</creator><creator>Even-Mendoza, Karine</creator><creator>tz, Sophie</creator><creator>Lenihan, Connor</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240920</creationdate><title>Accelerating Quantum Eigensolver Algorithms With Machine Learning</title><author>Bensoussan, Avner ; Chachkarova, Elena ; Even-Mendoza, Karine ; tz, Sophie ; Lenihan, Connor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31084417373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Error reduction</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Bensoussan, Avner</creatorcontrib><creatorcontrib>Chachkarova, Elena</creatorcontrib><creatorcontrib>Even-Mendoza, Karine</creatorcontrib><creatorcontrib>tz, Sophie</creatorcontrib><creatorcontrib>Lenihan, Connor</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bensoussan, Avner</au><au>Chachkarova, Elena</au><au>Even-Mendoza, Karine</au><au>tz, Sophie</au><au>Lenihan, Connor</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Accelerating Quantum Eigensolver Algorithms With Machine Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-09-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we explore accelerating Hamiltonian ground state energy calculation on NISQ devices. We suggest using search-based methods together with machine learning to accelerate quantum algorithms, exemplified in the Quantum Eigensolver use case. We trained two small models on classically mined data from systems with up to 16 qubits, using XGBoost's Python regressor. We evaluated our preliminary approach on 20-, 24- and 28-qubit systems by optimising the Eigensolver's hyperparameters. These models predict hyperparameter values, leading to a 0.13\%-0.15\% reduction in error when tested on 28-qubit systems. However, due to inconclusive results with 20- and 24-qubit systems, we suggest further examination of the training data based on Hamiltonian characteristics. In future work, we plan to train machine learning models to optimise other aspects or subroutines of quantum algorithm execution beyond its hyperparameters.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3108441737
source Free E- Journals
subjects Algorithms
Error reduction
Machine learning
Optimization
Qubits (quantum computing)
title Accelerating Quantum Eigensolver Algorithms With Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Accelerating%20Quantum%20Eigensolver%20Algorithms%20With%20Machine%20Learning&rft.jtitle=arXiv.org&rft.au=Bensoussan,%20Avner&rft.date=2024-09-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3108441737%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108441737&rft_id=info:pmid/&rfr_iscdi=true