A Deep Learning Approach for Pixel-level Material Classification via Hyperspectral Imaging

Recent advancements in computer vision, particularly in detection, segmentation, and classification, have significantly impacted various domains. However, these advancements are tied to RGB-based systems, which are insufficient for applications in industries like waste sorting, pharmaceuticals, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Sifnaios, Savvas, Arvanitakis, George, Konstantinidis, Fotios K, Tsimiklis, Georgios, Amditis, Angelos, Frangos, Panayiotis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sifnaios, Savvas
Arvanitakis, George
Konstantinidis, Fotios K
Tsimiklis, Georgios
Amditis, Angelos
Frangos, Panayiotis
description Recent advancements in computer vision, particularly in detection, segmentation, and classification, have significantly impacted various domains. However, these advancements are tied to RGB-based systems, which are insufficient for applications in industries like waste sorting, pharmaceuticals, and defense, where advanced object characterization beyond shape or color is necessary. Hyperspectral (HS) imaging, capturing both spectral and spatial information, addresses these limitations and offers advantages over conventional technologies such as X-ray fluorescence and Raman spectroscopy, particularly in terms of speed, cost, and safety. This study evaluates the potential of combining HS imaging with deep learning for material characterization. The research involves: i) designing an experimental setup with HS camera, conveyor, and controlled lighting; ii) generating a multi-object dataset of various plastics (HDPE, PET, PP, PS) with semi-automated mask generation and Raman spectroscopy-based labeling; and iii) developing a deep learning model trained on HS images for pixel-level material classification. The model achieved 99.94\% classification accuracy, demonstrating robustness in color, size, and shape invariance, and effectively handling material overlap. Limitations, such as challenges with black objects, are also discussed. Extending computer vision beyond RGB to HS imaging proves feasible, overcoming major limitations of traditional methods and showing strong potential for future applications.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3108440252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108440252</sourcerecordid><originalsourceid>FETCH-proquest_journals_31084402523</originalsourceid><addsrcrecordid>eNqNjcEKgkAURYcgSMp_eNBaGGe03IoVBgUtWrWRhzxtZBqnGY36-1z0Aa3O4h7umbFASBlHWSLEgoXed5xzsdmKNJUBu-WwI7JwInRGmRZya12P9R2a3sFFvUlHml6k4YwDOYUaCo3eq0bVOKjewEshlB9LzluqBzcJxwe209WKzRvUnsIfl2x92F-LMpoCz5H8UHX96Mw0VTLmWZJwkQr5n_UF2rhCQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108440252</pqid></control><display><type>article</type><title>A Deep Learning Approach for Pixel-level Material Classification via Hyperspectral Imaging</title><source>Free E- Journals</source><creator>Sifnaios, Savvas ; Arvanitakis, George ; Konstantinidis, Fotios K ; Tsimiklis, Georgios ; Amditis, Angelos ; Frangos, Panayiotis</creator><creatorcontrib>Sifnaios, Savvas ; Arvanitakis, George ; Konstantinidis, Fotios K ; Tsimiklis, Georgios ; Amditis, Angelos ; Frangos, Panayiotis</creatorcontrib><description>Recent advancements in computer vision, particularly in detection, segmentation, and classification, have significantly impacted various domains. However, these advancements are tied to RGB-based systems, which are insufficient for applications in industries like waste sorting, pharmaceuticals, and defense, where advanced object characterization beyond shape or color is necessary. Hyperspectral (HS) imaging, capturing both spectral and spatial information, addresses these limitations and offers advantages over conventional technologies such as X-ray fluorescence and Raman spectroscopy, particularly in terms of speed, cost, and safety. This study evaluates the potential of combining HS imaging with deep learning for material characterization. The research involves: i) designing an experimental setup with HS camera, conveyor, and controlled lighting; ii) generating a multi-object dataset of various plastics (HDPE, PET, PP, PS) with semi-automated mask generation and Raman spectroscopy-based labeling; and iii) developing a deep learning model trained on HS images for pixel-level material classification. The model achieved 99.94\% classification accuracy, demonstrating robustness in color, size, and shape invariance, and effectively handling material overlap. Limitations, such as challenges with black objects, are also discussed. Extending computer vision beyond RGB to HS imaging proves feasible, overcoming major limitations of traditional methods and showing strong potential for future applications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Computer vision ; Deep learning ; Defense industry ; Hyperspectral imaging ; Image segmentation ; Materials handling ; Pixels ; Polystyrene resins ; Positron emission ; Raman spectroscopy ; Spatial data ; Spectrum analysis ; X ray imagery ; X-ray fluorescence</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Sifnaios, Savvas</creatorcontrib><creatorcontrib>Arvanitakis, George</creatorcontrib><creatorcontrib>Konstantinidis, Fotios K</creatorcontrib><creatorcontrib>Tsimiklis, Georgios</creatorcontrib><creatorcontrib>Amditis, Angelos</creatorcontrib><creatorcontrib>Frangos, Panayiotis</creatorcontrib><title>A Deep Learning Approach for Pixel-level Material Classification via Hyperspectral Imaging</title><title>arXiv.org</title><description>Recent advancements in computer vision, particularly in detection, segmentation, and classification, have significantly impacted various domains. However, these advancements are tied to RGB-based systems, which are insufficient for applications in industries like waste sorting, pharmaceuticals, and defense, where advanced object characterization beyond shape or color is necessary. Hyperspectral (HS) imaging, capturing both spectral and spatial information, addresses these limitations and offers advantages over conventional technologies such as X-ray fluorescence and Raman spectroscopy, particularly in terms of speed, cost, and safety. This study evaluates the potential of combining HS imaging with deep learning for material characterization. The research involves: i) designing an experimental setup with HS camera, conveyor, and controlled lighting; ii) generating a multi-object dataset of various plastics (HDPE, PET, PP, PS) with semi-automated mask generation and Raman spectroscopy-based labeling; and iii) developing a deep learning model trained on HS images for pixel-level material classification. The model achieved 99.94\% classification accuracy, demonstrating robustness in color, size, and shape invariance, and effectively handling material overlap. Limitations, such as challenges with black objects, are also discussed. Extending computer vision beyond RGB to HS imaging proves feasible, overcoming major limitations of traditional methods and showing strong potential for future applications.</description><subject>Classification</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Defense industry</subject><subject>Hyperspectral imaging</subject><subject>Image segmentation</subject><subject>Materials handling</subject><subject>Pixels</subject><subject>Polystyrene resins</subject><subject>Positron emission</subject><subject>Raman spectroscopy</subject><subject>Spatial data</subject><subject>Spectrum analysis</subject><subject>X ray imagery</subject><subject>X-ray fluorescence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjcEKgkAURYcgSMp_eNBaGGe03IoVBgUtWrWRhzxtZBqnGY36-1z0Aa3O4h7umbFASBlHWSLEgoXed5xzsdmKNJUBu-WwI7JwInRGmRZya12P9R2a3sFFvUlHml6k4YwDOYUaCo3eq0bVOKjewEshlB9LzluqBzcJxwe209WKzRvUnsIfl2x92F-LMpoCz5H8UHX96Mw0VTLmWZJwkQr5n_UF2rhCQQ</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Sifnaios, Savvas</creator><creator>Arvanitakis, George</creator><creator>Konstantinidis, Fotios K</creator><creator>Tsimiklis, Georgios</creator><creator>Amditis, Angelos</creator><creator>Frangos, Panayiotis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240920</creationdate><title>A Deep Learning Approach for Pixel-level Material Classification via Hyperspectral Imaging</title><author>Sifnaios, Savvas ; Arvanitakis, George ; Konstantinidis, Fotios K ; Tsimiklis, Georgios ; Amditis, Angelos ; Frangos, Panayiotis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31084402523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Defense industry</topic><topic>Hyperspectral imaging</topic><topic>Image segmentation</topic><topic>Materials handling</topic><topic>Pixels</topic><topic>Polystyrene resins</topic><topic>Positron emission</topic><topic>Raman spectroscopy</topic><topic>Spatial data</topic><topic>Spectrum analysis</topic><topic>X ray imagery</topic><topic>X-ray fluorescence</topic><toplevel>online_resources</toplevel><creatorcontrib>Sifnaios, Savvas</creatorcontrib><creatorcontrib>Arvanitakis, George</creatorcontrib><creatorcontrib>Konstantinidis, Fotios K</creatorcontrib><creatorcontrib>Tsimiklis, Georgios</creatorcontrib><creatorcontrib>Amditis, Angelos</creatorcontrib><creatorcontrib>Frangos, Panayiotis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sifnaios, Savvas</au><au>Arvanitakis, George</au><au>Konstantinidis, Fotios K</au><au>Tsimiklis, Georgios</au><au>Amditis, Angelos</au><au>Frangos, Panayiotis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Deep Learning Approach for Pixel-level Material Classification via Hyperspectral Imaging</atitle><jtitle>arXiv.org</jtitle><date>2024-09-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recent advancements in computer vision, particularly in detection, segmentation, and classification, have significantly impacted various domains. However, these advancements are tied to RGB-based systems, which are insufficient for applications in industries like waste sorting, pharmaceuticals, and defense, where advanced object characterization beyond shape or color is necessary. Hyperspectral (HS) imaging, capturing both spectral and spatial information, addresses these limitations and offers advantages over conventional technologies such as X-ray fluorescence and Raman spectroscopy, particularly in terms of speed, cost, and safety. This study evaluates the potential of combining HS imaging with deep learning for material characterization. The research involves: i) designing an experimental setup with HS camera, conveyor, and controlled lighting; ii) generating a multi-object dataset of various plastics (HDPE, PET, PP, PS) with semi-automated mask generation and Raman spectroscopy-based labeling; and iii) developing a deep learning model trained on HS images for pixel-level material classification. The model achieved 99.94\% classification accuracy, demonstrating robustness in color, size, and shape invariance, and effectively handling material overlap. Limitations, such as challenges with black objects, are also discussed. Extending computer vision beyond RGB to HS imaging proves feasible, overcoming major limitations of traditional methods and showing strong potential for future applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3108440252
source Free E- Journals
subjects Classification
Computer vision
Deep learning
Defense industry
Hyperspectral imaging
Image segmentation
Materials handling
Pixels
Polystyrene resins
Positron emission
Raman spectroscopy
Spatial data
Spectrum analysis
X ray imagery
X-ray fluorescence
title A Deep Learning Approach for Pixel-level Material Classification via Hyperspectral Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Deep%20Learning%20Approach%20for%20Pixel-level%20Material%20Classification%20via%20Hyperspectral%20Imaging&rft.jtitle=arXiv.org&rft.au=Sifnaios,%20Savvas&rft.date=2024-09-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3108440252%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108440252&rft_id=info:pmid/&rfr_iscdi=true