(I=2\) \(\pi\pi\) \(s\)-wave scattering length from lattice QCD
The \(I=2\) \(\pi\pi\) elastic \(s\)-wave scattering phase shift is measured by lattice QCD with \(N_f=3\) flavors of the Asqtad-improved staggered fermions. The lattice-calculated energy-eigenvalues of \(\pi\pi\) systems at one center of mass frame and some moving frames using the moving wall sourc...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fu, Ziwen Wang, Jun |
description | The \(I=2\) \(\pi\pi\) elastic \(s\)-wave scattering phase shift is measured by lattice QCD with \(N_f=3\) flavors of the Asqtad-improved staggered fermions. The lattice-calculated energy-eigenvalues of \(\pi\pi\) systems at one center of mass frame and some moving frames using the moving wall source technique are utilized to secure phase shifts by L\"uscher's formula. Our computations are fine enough to obtain threshold parameters: scattering length \(a\), effective range \(r\), and shape parameter \(P\), which can be extrapolated at the physical point by NLO in chiral perturbation theory, and our relevant NNLO predictions from expanding NPLQCD's works are novelly considered as the systematic uncertainties. Our outcomes are consistent with Roy equation determinations, newer experimental data, and lattice estimations. Numerical computations are performed with a coarse (\(a\approx0.12\)~fm, \(L^3 T = 32^3 64\)), two fine (\(a\approx0.09\)~fm, \(L^3 T = 40^3 96\)) and a superfine (\(a\approx0.06\)~fm, \(L^3 T = 48^3 144\)) lattice ensembles at four pion masses of \(m_\pi\sim247~{\rm MeV}\), \(249~{\rm MeV}\), \(275~{\rm MeV}\), and \(384~{\rm MeV}\), respectively. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3108438349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108438349</sourcerecordid><originalsourceid>FETCH-proquest_journals_31084383493</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw1_C0NYrRVIjRiCnIBCEQszhGU7c8sSxVoTg5saQktSgzL10hJzUvvSRDIa0oP1chByiamZyqEOjswsPAmpaYU5zKC6W5GZTdXEOcPXQLivILS1OLS-Kz8kuL8oBS8caGBhYmxhbGJpbGxKkCALWONlY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108438349</pqid></control><display><type>article</type><title>(I=2\) \(\pi\pi\) \(s\)-wave scattering length from lattice QCD</title><source>Free E- Journals</source><creator>Fu, Ziwen ; Wang, Jun</creator><creatorcontrib>Fu, Ziwen ; Wang, Jun</creatorcontrib><description>The \(I=2\) \(\pi\pi\) elastic \(s\)-wave scattering phase shift is measured by lattice QCD with \(N_f=3\) flavors of the Asqtad-improved staggered fermions. The lattice-calculated energy-eigenvalues of \(\pi\pi\) systems at one center of mass frame and some moving frames using the moving wall source technique are utilized to secure phase shifts by L\"uscher's formula. Our computations are fine enough to obtain threshold parameters: scattering length \(a\), effective range \(r\), and shape parameter \(P\), which can be extrapolated at the physical point by NLO in chiral perturbation theory, and our relevant NNLO predictions from expanding NPLQCD's works are novelly considered as the systematic uncertainties. Our outcomes are consistent with Roy equation determinations, newer experimental data, and lattice estimations. Numerical computations are performed with a coarse (\(a\approx0.12\)~fm, \(L^3 T = 32^3 64\)), two fine (\(a\approx0.09\)~fm, \(L^3 T = 40^3 96\)) and a superfine (\(a\approx0.06\)~fm, \(L^3 T = 48^3 144\)) lattice ensembles at four pion masses of \(m_\pi\sim247~{\rm MeV}\), \(249~{\rm MeV}\), \(275~{\rm MeV}\), and \(384~{\rm MeV}\), respectively.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chiral dynamics ; Eigenvalues ; Fermions ; Flavor (particle physics) ; Moving walls ; Parameters ; Perturbation theory ; Pions ; Quantum chromodynamics ; Ultrafines ; Wave scattering</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fu, Ziwen</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><title>(I=2\) \(\pi\pi\) \(s\)-wave scattering length from lattice QCD</title><title>arXiv.org</title><description>The \(I=2\) \(\pi\pi\) elastic \(s\)-wave scattering phase shift is measured by lattice QCD with \(N_f=3\) flavors of the Asqtad-improved staggered fermions. The lattice-calculated energy-eigenvalues of \(\pi\pi\) systems at one center of mass frame and some moving frames using the moving wall source technique are utilized to secure phase shifts by L\"uscher's formula. Our computations are fine enough to obtain threshold parameters: scattering length \(a\), effective range \(r\), and shape parameter \(P\), which can be extrapolated at the physical point by NLO in chiral perturbation theory, and our relevant NNLO predictions from expanding NPLQCD's works are novelly considered as the systematic uncertainties. Our outcomes are consistent with Roy equation determinations, newer experimental data, and lattice estimations. Numerical computations are performed with a coarse (\(a\approx0.12\)~fm, \(L^3 T = 32^3 64\)), two fine (\(a\approx0.09\)~fm, \(L^3 T = 40^3 96\)) and a superfine (\(a\approx0.06\)~fm, \(L^3 T = 48^3 144\)) lattice ensembles at four pion masses of \(m_\pi\sim247~{\rm MeV}\), \(249~{\rm MeV}\), \(275~{\rm MeV}\), and \(384~{\rm MeV}\), respectively.</description><subject>Chiral dynamics</subject><subject>Eigenvalues</subject><subject>Fermions</subject><subject>Flavor (particle physics)</subject><subject>Moving walls</subject><subject>Parameters</subject><subject>Perturbation theory</subject><subject>Pions</subject><subject>Quantum chromodynamics</subject><subject>Ultrafines</subject><subject>Wave scattering</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw1_C0NYrRVIjRiCnIBCEQszhGU7c8sSxVoTg5saQktSgzL10hJzUvvSRDIa0oP1chByiamZyqEOjswsPAmpaYU5zKC6W5GZTdXEOcPXQLivILS1OLS-Kz8kuL8oBS8caGBhYmxhbGJpbGxKkCALWONlY</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Fu, Ziwen</creator><creator>Wang, Jun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240920</creationdate><title>(I=2\) \(\pi\pi\) \(s\)-wave scattering length from lattice QCD</title><author>Fu, Ziwen ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31084383493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chiral dynamics</topic><topic>Eigenvalues</topic><topic>Fermions</topic><topic>Flavor (particle physics)</topic><topic>Moving walls</topic><topic>Parameters</topic><topic>Perturbation theory</topic><topic>Pions</topic><topic>Quantum chromodynamics</topic><topic>Ultrafines</topic><topic>Wave scattering</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Ziwen</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Ziwen</au><au>Wang, Jun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(I=2\) \(\pi\pi\) \(s\)-wave scattering length from lattice QCD</atitle><jtitle>arXiv.org</jtitle><date>2024-09-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The \(I=2\) \(\pi\pi\) elastic \(s\)-wave scattering phase shift is measured by lattice QCD with \(N_f=3\) flavors of the Asqtad-improved staggered fermions. The lattice-calculated energy-eigenvalues of \(\pi\pi\) systems at one center of mass frame and some moving frames using the moving wall source technique are utilized to secure phase shifts by L\"uscher's formula. Our computations are fine enough to obtain threshold parameters: scattering length \(a\), effective range \(r\), and shape parameter \(P\), which can be extrapolated at the physical point by NLO in chiral perturbation theory, and our relevant NNLO predictions from expanding NPLQCD's works are novelly considered as the systematic uncertainties. Our outcomes are consistent with Roy equation determinations, newer experimental data, and lattice estimations. Numerical computations are performed with a coarse (\(a\approx0.12\)~fm, \(L^3 T = 32^3 64\)), two fine (\(a\approx0.09\)~fm, \(L^3 T = 40^3 96\)) and a superfine (\(a\approx0.06\)~fm, \(L^3 T = 48^3 144\)) lattice ensembles at four pion masses of \(m_\pi\sim247~{\rm MeV}\), \(249~{\rm MeV}\), \(275~{\rm MeV}\), and \(384~{\rm MeV}\), respectively.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3108438349 |
source | Free E- Journals |
subjects | Chiral dynamics Eigenvalues Fermions Flavor (particle physics) Moving walls Parameters Perturbation theory Pions Quantum chromodynamics Ultrafines Wave scattering |
title | (I=2\) \(\pi\pi\) \(s\)-wave scattering length from lattice QCD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(I=2%5C)%20%5C(%5Cpi%5Cpi%5C)%20%5C(s%5C)-wave%20scattering%20length%20from%20lattice%20QCD&rft.jtitle=arXiv.org&rft.au=Fu,%20Ziwen&rft.date=2024-09-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3108438349%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108438349&rft_id=info:pmid/&rfr_iscdi=true |