(I=2\) \(\pi\pi\) \(s\)-wave scattering length from lattice QCD

The \(I=2\) \(\pi\pi\) elastic \(s\)-wave scattering phase shift is measured by lattice QCD with \(N_f=3\) flavors of the Asqtad-improved staggered fermions. The lattice-calculated energy-eigenvalues of \(\pi\pi\) systems at one center of mass frame and some moving frames using the moving wall sourc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Fu, Ziwen, Wang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fu, Ziwen
Wang, Jun
description The \(I=2\) \(\pi\pi\) elastic \(s\)-wave scattering phase shift is measured by lattice QCD with \(N_f=3\) flavors of the Asqtad-improved staggered fermions. The lattice-calculated energy-eigenvalues of \(\pi\pi\) systems at one center of mass frame and some moving frames using the moving wall source technique are utilized to secure phase shifts by L\"uscher's formula. Our computations are fine enough to obtain threshold parameters: scattering length \(a\), effective range \(r\), and shape parameter \(P\), which can be extrapolated at the physical point by NLO in chiral perturbation theory, and our relevant NNLO predictions from expanding NPLQCD's works are novelly considered as the systematic uncertainties. Our outcomes are consistent with Roy equation determinations, newer experimental data, and lattice estimations. Numerical computations are performed with a coarse (\(a\approx0.12\)~fm, \(L^3 T = 32^3 64\)), two fine (\(a\approx0.09\)~fm, \(L^3 T = 40^3 96\)) and a superfine (\(a\approx0.06\)~fm, \(L^3 T = 48^3 144\)) lattice ensembles at four pion masses of \(m_\pi\sim247~{\rm MeV}\), \(249~{\rm MeV}\), \(275~{\rm MeV}\), and \(384~{\rm MeV}\), respectively.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3108438349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108438349</sourcerecordid><originalsourceid>FETCH-proquest_journals_31084383493</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw1_C0NYrRVIjRiCnIBCEQszhGU7c8sSxVoTg5saQktSgzL10hJzUvvSRDIa0oP1chByiamZyqEOjswsPAmpaYU5zKC6W5GZTdXEOcPXQLivILS1OLS-Kz8kuL8oBS8caGBhYmxhbGJpbGxKkCALWONlY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108438349</pqid></control><display><type>article</type><title>(I=2\) \(\pi\pi\) \(s\)-wave scattering length from lattice QCD</title><source>Free E- Journals</source><creator>Fu, Ziwen ; Wang, Jun</creator><creatorcontrib>Fu, Ziwen ; Wang, Jun</creatorcontrib><description>The \(I=2\) \(\pi\pi\) elastic \(s\)-wave scattering phase shift is measured by lattice QCD with \(N_f=3\) flavors of the Asqtad-improved staggered fermions. The lattice-calculated energy-eigenvalues of \(\pi\pi\) systems at one center of mass frame and some moving frames using the moving wall source technique are utilized to secure phase shifts by L\"uscher's formula. Our computations are fine enough to obtain threshold parameters: scattering length \(a\), effective range \(r\), and shape parameter \(P\), which can be extrapolated at the physical point by NLO in chiral perturbation theory, and our relevant NNLO predictions from expanding NPLQCD's works are novelly considered as the systematic uncertainties. Our outcomes are consistent with Roy equation determinations, newer experimental data, and lattice estimations. Numerical computations are performed with a coarse (\(a\approx0.12\)~fm, \(L^3 T = 32^3 64\)), two fine (\(a\approx0.09\)~fm, \(L^3 T = 40^3 96\)) and a superfine (\(a\approx0.06\)~fm, \(L^3 T = 48^3 144\)) lattice ensembles at four pion masses of \(m_\pi\sim247~{\rm MeV}\), \(249~{\rm MeV}\), \(275~{\rm MeV}\), and \(384~{\rm MeV}\), respectively.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chiral dynamics ; Eigenvalues ; Fermions ; Flavor (particle physics) ; Moving walls ; Parameters ; Perturbation theory ; Pions ; Quantum chromodynamics ; Ultrafines ; Wave scattering</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fu, Ziwen</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><title>(I=2\) \(\pi\pi\) \(s\)-wave scattering length from lattice QCD</title><title>arXiv.org</title><description>The \(I=2\) \(\pi\pi\) elastic \(s\)-wave scattering phase shift is measured by lattice QCD with \(N_f=3\) flavors of the Asqtad-improved staggered fermions. The lattice-calculated energy-eigenvalues of \(\pi\pi\) systems at one center of mass frame and some moving frames using the moving wall source technique are utilized to secure phase shifts by L\"uscher's formula. Our computations are fine enough to obtain threshold parameters: scattering length \(a\), effective range \(r\), and shape parameter \(P\), which can be extrapolated at the physical point by NLO in chiral perturbation theory, and our relevant NNLO predictions from expanding NPLQCD's works are novelly considered as the systematic uncertainties. Our outcomes are consistent with Roy equation determinations, newer experimental data, and lattice estimations. Numerical computations are performed with a coarse (\(a\approx0.12\)~fm, \(L^3 T = 32^3 64\)), two fine (\(a\approx0.09\)~fm, \(L^3 T = 40^3 96\)) and a superfine (\(a\approx0.06\)~fm, \(L^3 T = 48^3 144\)) lattice ensembles at four pion masses of \(m_\pi\sim247~{\rm MeV}\), \(249~{\rm MeV}\), \(275~{\rm MeV}\), and \(384~{\rm MeV}\), respectively.</description><subject>Chiral dynamics</subject><subject>Eigenvalues</subject><subject>Fermions</subject><subject>Flavor (particle physics)</subject><subject>Moving walls</subject><subject>Parameters</subject><subject>Perturbation theory</subject><subject>Pions</subject><subject>Quantum chromodynamics</subject><subject>Ultrafines</subject><subject>Wave scattering</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw1_C0NYrRVIjRiCnIBCEQszhGU7c8sSxVoTg5saQktSgzL10hJzUvvSRDIa0oP1chByiamZyqEOjswsPAmpaYU5zKC6W5GZTdXEOcPXQLivILS1OLS-Kz8kuL8oBS8caGBhYmxhbGJpbGxKkCALWONlY</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Fu, Ziwen</creator><creator>Wang, Jun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240920</creationdate><title>(I=2\) \(\pi\pi\) \(s\)-wave scattering length from lattice QCD</title><author>Fu, Ziwen ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31084383493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chiral dynamics</topic><topic>Eigenvalues</topic><topic>Fermions</topic><topic>Flavor (particle physics)</topic><topic>Moving walls</topic><topic>Parameters</topic><topic>Perturbation theory</topic><topic>Pions</topic><topic>Quantum chromodynamics</topic><topic>Ultrafines</topic><topic>Wave scattering</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Ziwen</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Ziwen</au><au>Wang, Jun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(I=2\) \(\pi\pi\) \(s\)-wave scattering length from lattice QCD</atitle><jtitle>arXiv.org</jtitle><date>2024-09-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The \(I=2\) \(\pi\pi\) elastic \(s\)-wave scattering phase shift is measured by lattice QCD with \(N_f=3\) flavors of the Asqtad-improved staggered fermions. The lattice-calculated energy-eigenvalues of \(\pi\pi\) systems at one center of mass frame and some moving frames using the moving wall source technique are utilized to secure phase shifts by L\"uscher's formula. Our computations are fine enough to obtain threshold parameters: scattering length \(a\), effective range \(r\), and shape parameter \(P\), which can be extrapolated at the physical point by NLO in chiral perturbation theory, and our relevant NNLO predictions from expanding NPLQCD's works are novelly considered as the systematic uncertainties. Our outcomes are consistent with Roy equation determinations, newer experimental data, and lattice estimations. Numerical computations are performed with a coarse (\(a\approx0.12\)~fm, \(L^3 T = 32^3 64\)), two fine (\(a\approx0.09\)~fm, \(L^3 T = 40^3 96\)) and a superfine (\(a\approx0.06\)~fm, \(L^3 T = 48^3 144\)) lattice ensembles at four pion masses of \(m_\pi\sim247~{\rm MeV}\), \(249~{\rm MeV}\), \(275~{\rm MeV}\), and \(384~{\rm MeV}\), respectively.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3108438349
source Free E- Journals
subjects Chiral dynamics
Eigenvalues
Fermions
Flavor (particle physics)
Moving walls
Parameters
Perturbation theory
Pions
Quantum chromodynamics
Ultrafines
Wave scattering
title (I=2\) \(\pi\pi\) \(s\)-wave scattering length from lattice QCD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(I=2%5C)%20%5C(%5Cpi%5Cpi%5C)%20%5C(s%5C)-wave%20scattering%20length%20from%20lattice%20QCD&rft.jtitle=arXiv.org&rft.au=Fu,%20Ziwen&rft.date=2024-09-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3108438349%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108438349&rft_id=info:pmid/&rfr_iscdi=true