EmotionQueen: A Benchmark for Evaluating Empathy of Large Language Models
Emotional intelligence in large language models (LLMs) is of great importance in Natural Language Processing. However, the previous research mainly focus on basic sentiment analysis tasks, such as emotion recognition, which is not enough to evaluate LLMs' overall emotional intelligence. Therefo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chen, Yuyan Wang, Hao Songzhou Yan Liu, Sijia Li, Yueze Zhao, Yi Xiao, Yanghua |
description | Emotional intelligence in large language models (LLMs) is of great importance in Natural Language Processing. However, the previous research mainly focus on basic sentiment analysis tasks, such as emotion recognition, which is not enough to evaluate LLMs' overall emotional intelligence. Therefore, this paper presents a novel framework named EmotionQueen for evaluating the emotional intelligence of LLMs. The framework includes four distinctive tasks: Key Event Recognition, Mixed Event Recognition, Implicit Emotional Recognition, and Intention Recognition. LLMs are requested to recognize important event or implicit emotions and generate empathetic response. We also design two metrics to evaluate LLMs' capabilities in recognition and response for emotion-related statements. Experiments yield significant conclusions about LLMs' capabilities and limitations in emotion intelligence. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3108437735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108437735</sourcerecordid><originalsourceid>FETCH-proquest_journals_31084377353</originalsourceid><addsrcrecordid>eNqNissKwjAUBYMgWLT_EHBdSHNbW9ypRBR0IXRfgqYv29yah-Df24Uf4ObMwJwZCThAHOUJ5wsSWtsxxvgm42kKATmLAV2L-uaV0lu6o3ul780gzZNWaKh4y95L1-qaimGUrvlQrOhFmlpNq2svJ7niQ_V2ReaV7K0Kf1yS9VEUh1M0Gnx5ZV3ZoTd6SiXELE8gyyCF_15fHyE7lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108437735</pqid></control><display><type>article</type><title>EmotionQueen: A Benchmark for Evaluating Empathy of Large Language Models</title><source>Free E- Journals</source><creator>Chen, Yuyan ; Wang, Hao ; Songzhou Yan ; Liu, Sijia ; Li, Yueze ; Zhao, Yi ; Xiao, Yanghua</creator><creatorcontrib>Chen, Yuyan ; Wang, Hao ; Songzhou Yan ; Liu, Sijia ; Li, Yueze ; Zhao, Yi ; Xiao, Yanghua</creatorcontrib><description>Emotional intelligence in large language models (LLMs) is of great importance in Natural Language Processing. However, the previous research mainly focus on basic sentiment analysis tasks, such as emotion recognition, which is not enough to evaluate LLMs' overall emotional intelligence. Therefore, this paper presents a novel framework named EmotionQueen for evaluating the emotional intelligence of LLMs. The framework includes four distinctive tasks: Key Event Recognition, Mixed Event Recognition, Implicit Emotional Recognition, and Intention Recognition. LLMs are requested to recognize important event or implicit emotions and generate empathetic response. We also design two metrics to evaluate LLMs' capabilities in recognition and response for emotion-related statements. Experiments yield significant conclusions about LLMs' capabilities and limitations in emotion intelligence.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data mining ; Emotion recognition ; Emotions ; Large language models ; Natural language processing ; Sentiment analysis</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chen, Yuyan</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Songzhou Yan</creatorcontrib><creatorcontrib>Liu, Sijia</creatorcontrib><creatorcontrib>Li, Yueze</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Xiao, Yanghua</creatorcontrib><title>EmotionQueen: A Benchmark for Evaluating Empathy of Large Language Models</title><title>arXiv.org</title><description>Emotional intelligence in large language models (LLMs) is of great importance in Natural Language Processing. However, the previous research mainly focus on basic sentiment analysis tasks, such as emotion recognition, which is not enough to evaluate LLMs' overall emotional intelligence. Therefore, this paper presents a novel framework named EmotionQueen for evaluating the emotional intelligence of LLMs. The framework includes four distinctive tasks: Key Event Recognition, Mixed Event Recognition, Implicit Emotional Recognition, and Intention Recognition. LLMs are requested to recognize important event or implicit emotions and generate empathetic response. We also design two metrics to evaluate LLMs' capabilities in recognition and response for emotion-related statements. Experiments yield significant conclusions about LLMs' capabilities and limitations in emotion intelligence.</description><subject>Data mining</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Large language models</subject><subject>Natural language processing</subject><subject>Sentiment analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAUBYMgWLT_EHBdSHNbW9ypRBR0IXRfgqYv29yah-Df24Uf4ObMwJwZCThAHOUJ5wsSWtsxxvgm42kKATmLAV2L-uaV0lu6o3ul780gzZNWaKh4y95L1-qaimGUrvlQrOhFmlpNq2svJ7niQ_V2ReaV7K0Kf1yS9VEUh1M0Gnx5ZV3ZoTd6SiXELE8gyyCF_15fHyE7lg</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Chen, Yuyan</creator><creator>Wang, Hao</creator><creator>Songzhou Yan</creator><creator>Liu, Sijia</creator><creator>Li, Yueze</creator><creator>Zhao, Yi</creator><creator>Xiao, Yanghua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240920</creationdate><title>EmotionQueen: A Benchmark for Evaluating Empathy of Large Language Models</title><author>Chen, Yuyan ; Wang, Hao ; Songzhou Yan ; Liu, Sijia ; Li, Yueze ; Zhao, Yi ; Xiao, Yanghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31084377353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data mining</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Large language models</topic><topic>Natural language processing</topic><topic>Sentiment analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuyan</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Songzhou Yan</creatorcontrib><creatorcontrib>Liu, Sijia</creatorcontrib><creatorcontrib>Li, Yueze</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Xiao, Yanghua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yuyan</au><au>Wang, Hao</au><au>Songzhou Yan</au><au>Liu, Sijia</au><au>Li, Yueze</au><au>Zhao, Yi</au><au>Xiao, Yanghua</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>EmotionQueen: A Benchmark for Evaluating Empathy of Large Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-09-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Emotional intelligence in large language models (LLMs) is of great importance in Natural Language Processing. However, the previous research mainly focus on basic sentiment analysis tasks, such as emotion recognition, which is not enough to evaluate LLMs' overall emotional intelligence. Therefore, this paper presents a novel framework named EmotionQueen for evaluating the emotional intelligence of LLMs. The framework includes four distinctive tasks: Key Event Recognition, Mixed Event Recognition, Implicit Emotional Recognition, and Intention Recognition. LLMs are requested to recognize important event or implicit emotions and generate empathetic response. We also design two metrics to evaluate LLMs' capabilities in recognition and response for emotion-related statements. Experiments yield significant conclusions about LLMs' capabilities and limitations in emotion intelligence.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3108437735 |
source | Free E- Journals |
subjects | Data mining Emotion recognition Emotions Large language models Natural language processing Sentiment analysis |
title | EmotionQueen: A Benchmark for Evaluating Empathy of Large Language Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=EmotionQueen:%20A%20Benchmark%20for%20Evaluating%20Empathy%20of%20Large%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Chen,%20Yuyan&rft.date=2024-09-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3108437735%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108437735&rft_id=info:pmid/&rfr_iscdi=true |