Advancing Stress Detection with Machine Learning: A Study on Multimodal Data Integration
Stress detection is a critical area in mental health, impacting both individual well-being and productivity. Traditional methods of stress assessment are often subjective and time-consuming. Recent advancements in machine learning have opened new avenues for automatic stress detection using multimod...
Gespeichert in:
Veröffentlicht in: | International journal of communication networks and information security 2024-09, Vol.16 (3), p.174-177 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 3 |
container_start_page | 174 |
container_title | International journal of communication networks and information security |
container_volume | 16 |
creator | Gupta, Reshu Kumar, Aniket |
description | Stress detection is a critical area in mental health, impacting both individual well-being and productivity. Traditional methods of stress assessment are often subjective and time-consuming. Recent advancements in machine learning have opened new avenues for automatic stress detection using multimodal data fusion techniques, which integrate diverse data sources such as physiological signals, behavioral cues, and contextual information. This paper explores the state-of-the-art multimodal data fusion techniques for automatic stress detection, presenting a comprehensive literature review, detailed methodology, and an analysis of their efficacy. The study concludes by discussing the challenges, potential solutions, and future directions in the field. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3108401956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108401956</sourcerecordid><originalsourceid>FETCH-proquest_journals_31084019563</originalsourceid><addsrcrecordid>eNqNy80KgkAUBeAhCrKfd7jQWrhmjdlOsijIVS3cyaCTjthYM2PR2zdFD9DqHDjf6RFnjgF1MfSx_-2-SzFIh2SkdY1IKWLokDQqHkzmQpZwMoprDTE3PDeilfAUpoKE5ZWQHI6cKWnZGiIru-IFViRdY8S1LVgDMTMMDtLwUrHPe0IGF9ZoPv3lmMx22_Nm795Ue--4NlnddkraKfM9XC3QC5fU_0-9AXlrQr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108401956</pqid></control><display><type>article</type><title>Advancing Stress Detection with Machine Learning: A Study on Multimodal Data Integration</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gupta, Reshu ; Kumar, Aniket</creator><creatorcontrib>Gupta, Reshu ; Kumar, Aniket</creatorcontrib><description>Stress detection is a critical area in mental health, impacting both individual well-being and productivity. Traditional methods of stress assessment are often subjective and time-consuming. Recent advancements in machine learning have opened new avenues for automatic stress detection using multimodal data fusion techniques, which integrate diverse data sources such as physiological signals, behavioral cues, and contextual information. This paper explores the state-of-the-art multimodal data fusion techniques for automatic stress detection, presenting a comprehensive literature review, detailed methodology, and an analysis of their efficacy. The study concludes by discussing the challenges, potential solutions, and future directions in the field.</description><identifier>ISSN: 2073-607X</identifier><identifier>EISSN: 2076-0930</identifier><language>eng</language><publisher>Kohat: Kohat University of Science and Technology (KUST)</publisher><subject>Accuracy ; Algorithms ; Data collection ; Data integration ; Datasets ; Feature selection ; Heart rate ; Literature reviews ; Machine learning ; Mental health ; Neural networks ; Performance evaluation ; Physiology ; Principal components analysis ; Questionnaires ; Sensors ; Smartphones ; State-of-the-art reviews ; Stress ; Support vector machines</subject><ispartof>International journal of communication networks and information security, 2024-09, Vol.16 (3), p.174-177</ispartof><rights>Copyright Kohat University of Science and Technology (KUST) Sep 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Gupta, Reshu</creatorcontrib><creatorcontrib>Kumar, Aniket</creatorcontrib><title>Advancing Stress Detection with Machine Learning: A Study on Multimodal Data Integration</title><title>International journal of communication networks and information security</title><description>Stress detection is a critical area in mental health, impacting both individual well-being and productivity. Traditional methods of stress assessment are often subjective and time-consuming. Recent advancements in machine learning have opened new avenues for automatic stress detection using multimodal data fusion techniques, which integrate diverse data sources such as physiological signals, behavioral cues, and contextual information. This paper explores the state-of-the-art multimodal data fusion techniques for automatic stress detection, presenting a comprehensive literature review, detailed methodology, and an analysis of their efficacy. The study concludes by discussing the challenges, potential solutions, and future directions in the field.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Data collection</subject><subject>Data integration</subject><subject>Datasets</subject><subject>Feature selection</subject><subject>Heart rate</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Mental health</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Physiology</subject><subject>Principal components analysis</subject><subject>Questionnaires</subject><subject>Sensors</subject><subject>Smartphones</subject><subject>State-of-the-art reviews</subject><subject>Stress</subject><subject>Support vector machines</subject><issn>2073-607X</issn><issn>2076-0930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNy80KgkAUBeAhCrKfd7jQWrhmjdlOsijIVS3cyaCTjthYM2PR2zdFD9DqHDjf6RFnjgF1MfSx_-2-SzFIh2SkdY1IKWLokDQqHkzmQpZwMoprDTE3PDeilfAUpoKE5ZWQHI6cKWnZGiIru-IFViRdY8S1LVgDMTMMDtLwUrHPe0IGF9ZoPv3lmMx22_Nm795Ue--4NlnddkraKfM9XC3QC5fU_0-9AXlrQr4</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Gupta, Reshu</creator><creator>Kumar, Aniket</creator><general>Kohat University of Science and Technology (KUST)</general><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RQ</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2P</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20240901</creationdate><title>Advancing Stress Detection with Machine Learning: A Study on Multimodal Data Integration</title><author>Gupta, Reshu ; Kumar, Aniket</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31084019563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Data collection</topic><topic>Data integration</topic><topic>Datasets</topic><topic>Feature selection</topic><topic>Heart rate</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Mental health</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Physiology</topic><topic>Principal components analysis</topic><topic>Questionnaires</topic><topic>Sensors</topic><topic>Smartphones</topic><topic>State-of-the-art reviews</topic><topic>Stress</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Reshu</creatorcontrib><creatorcontrib>Kumar, Aniket</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Career & Technical Education Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of communication networks and information security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Reshu</au><au>Kumar, Aniket</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing Stress Detection with Machine Learning: A Study on Multimodal Data Integration</atitle><jtitle>International journal of communication networks and information security</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>16</volume><issue>3</issue><spage>174</spage><epage>177</epage><pages>174-177</pages><issn>2073-607X</issn><eissn>2076-0930</eissn><abstract>Stress detection is a critical area in mental health, impacting both individual well-being and productivity. Traditional methods of stress assessment are often subjective and time-consuming. Recent advancements in machine learning have opened new avenues for automatic stress detection using multimodal data fusion techniques, which integrate diverse data sources such as physiological signals, behavioral cues, and contextual information. This paper explores the state-of-the-art multimodal data fusion techniques for automatic stress detection, presenting a comprehensive literature review, detailed methodology, and an analysis of their efficacy. The study concludes by discussing the challenges, potential solutions, and future directions in the field.</abstract><cop>Kohat</cop><pub>Kohat University of Science and Technology (KUST)</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-607X |
ispartof | International journal of communication networks and information security, 2024-09, Vol.16 (3), p.174-177 |
issn | 2073-607X 2076-0930 |
language | eng |
recordid | cdi_proquest_journals_3108401956 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Algorithms Data collection Data integration Datasets Feature selection Heart rate Literature reviews Machine learning Mental health Neural networks Performance evaluation Physiology Principal components analysis Questionnaires Sensors Smartphones State-of-the-art reviews Stress Support vector machines |
title | Advancing Stress Detection with Machine Learning: A Study on Multimodal Data Integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20Stress%20Detection%20with%20Machine%20Learning:%20A%20Study%20on%20Multimodal%20Data%20Integration&rft.jtitle=International%20journal%20of%20communication%20networks%20and%20information%20security&rft.au=Gupta,%20Reshu&rft.date=2024-09-01&rft.volume=16&rft.issue=3&rft.spage=174&rft.epage=177&rft.pages=174-177&rft.issn=2073-607X&rft.eissn=2076-0930&rft_id=info:doi/&rft_dat=%3Cproquest%3E3108401956%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108401956&rft_id=info:pmid/&rfr_iscdi=true |