Advancing Stress Detection with Machine Learning: A Study on Multimodal Data Integration

Stress detection is a critical area in mental health, impacting both individual well-being and productivity. Traditional methods of stress assessment are often subjective and time-consuming. Recent advancements in machine learning have opened new avenues for automatic stress detection using multimod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of communication networks and information security 2024-09, Vol.16 (3), p.174-177
Hauptverfasser: Gupta, Reshu, Kumar, Aniket
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 3
container_start_page 174
container_title International journal of communication networks and information security
container_volume 16
creator Gupta, Reshu
Kumar, Aniket
description Stress detection is a critical area in mental health, impacting both individual well-being and productivity. Traditional methods of stress assessment are often subjective and time-consuming. Recent advancements in machine learning have opened new avenues for automatic stress detection using multimodal data fusion techniques, which integrate diverse data sources such as physiological signals, behavioral cues, and contextual information. This paper explores the state-of-the-art multimodal data fusion techniques for automatic stress detection, presenting a comprehensive literature review, detailed methodology, and an analysis of their efficacy. The study concludes by discussing the challenges, potential solutions, and future directions in the field.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3108401956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108401956</sourcerecordid><originalsourceid>FETCH-proquest_journals_31084019563</originalsourceid><addsrcrecordid>eNqNy80KgkAUBeAhCrKfd7jQWrhmjdlOsijIVS3cyaCTjthYM2PR2zdFD9DqHDjf6RFnjgF1MfSx_-2-SzFIh2SkdY1IKWLokDQqHkzmQpZwMoprDTE3PDeilfAUpoKE5ZWQHI6cKWnZGiIru-IFViRdY8S1LVgDMTMMDtLwUrHPe0IGF9ZoPv3lmMx22_Nm795Ue--4NlnddkraKfM9XC3QC5fU_0-9AXlrQr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108401956</pqid></control><display><type>article</type><title>Advancing Stress Detection with Machine Learning: A Study on Multimodal Data Integration</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gupta, Reshu ; Kumar, Aniket</creator><creatorcontrib>Gupta, Reshu ; Kumar, Aniket</creatorcontrib><description>Stress detection is a critical area in mental health, impacting both individual well-being and productivity. Traditional methods of stress assessment are often subjective and time-consuming. Recent advancements in machine learning have opened new avenues for automatic stress detection using multimodal data fusion techniques, which integrate diverse data sources such as physiological signals, behavioral cues, and contextual information. This paper explores the state-of-the-art multimodal data fusion techniques for automatic stress detection, presenting a comprehensive literature review, detailed methodology, and an analysis of their efficacy. The study concludes by discussing the challenges, potential solutions, and future directions in the field.</description><identifier>ISSN: 2073-607X</identifier><identifier>EISSN: 2076-0930</identifier><language>eng</language><publisher>Kohat: Kohat University of Science and Technology (KUST)</publisher><subject>Accuracy ; Algorithms ; Data collection ; Data integration ; Datasets ; Feature selection ; Heart rate ; Literature reviews ; Machine learning ; Mental health ; Neural networks ; Performance evaluation ; Physiology ; Principal components analysis ; Questionnaires ; Sensors ; Smartphones ; State-of-the-art reviews ; Stress ; Support vector machines</subject><ispartof>International journal of communication networks and information security, 2024-09, Vol.16 (3), p.174-177</ispartof><rights>Copyright Kohat University of Science and Technology (KUST) Sep 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Gupta, Reshu</creatorcontrib><creatorcontrib>Kumar, Aniket</creatorcontrib><title>Advancing Stress Detection with Machine Learning: A Study on Multimodal Data Integration</title><title>International journal of communication networks and information security</title><description>Stress detection is a critical area in mental health, impacting both individual well-being and productivity. Traditional methods of stress assessment are often subjective and time-consuming. Recent advancements in machine learning have opened new avenues for automatic stress detection using multimodal data fusion techniques, which integrate diverse data sources such as physiological signals, behavioral cues, and contextual information. This paper explores the state-of-the-art multimodal data fusion techniques for automatic stress detection, presenting a comprehensive literature review, detailed methodology, and an analysis of their efficacy. The study concludes by discussing the challenges, potential solutions, and future directions in the field.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Data collection</subject><subject>Data integration</subject><subject>Datasets</subject><subject>Feature selection</subject><subject>Heart rate</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Mental health</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Physiology</subject><subject>Principal components analysis</subject><subject>Questionnaires</subject><subject>Sensors</subject><subject>Smartphones</subject><subject>State-of-the-art reviews</subject><subject>Stress</subject><subject>Support vector machines</subject><issn>2073-607X</issn><issn>2076-0930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNy80KgkAUBeAhCrKfd7jQWrhmjdlOsijIVS3cyaCTjthYM2PR2zdFD9DqHDjf6RFnjgF1MfSx_-2-SzFIh2SkdY1IKWLokDQqHkzmQpZwMoprDTE3PDeilfAUpoKE5ZWQHI6cKWnZGiIru-IFViRdY8S1LVgDMTMMDtLwUrHPe0IGF9ZoPv3lmMx22_Nm795Ue--4NlnddkraKfM9XC3QC5fU_0-9AXlrQr4</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Gupta, Reshu</creator><creator>Kumar, Aniket</creator><general>Kohat University of Science and Technology (KUST)</general><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RQ</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2P</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20240901</creationdate><title>Advancing Stress Detection with Machine Learning: A Study on Multimodal Data Integration</title><author>Gupta, Reshu ; Kumar, Aniket</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31084019563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Data collection</topic><topic>Data integration</topic><topic>Datasets</topic><topic>Feature selection</topic><topic>Heart rate</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Mental health</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Physiology</topic><topic>Principal components analysis</topic><topic>Questionnaires</topic><topic>Sensors</topic><topic>Smartphones</topic><topic>State-of-the-art reviews</topic><topic>Stress</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Reshu</creatorcontrib><creatorcontrib>Kumar, Aniket</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Career &amp; Technical Education Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of communication networks and information security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Reshu</au><au>Kumar, Aniket</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing Stress Detection with Machine Learning: A Study on Multimodal Data Integration</atitle><jtitle>International journal of communication networks and information security</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>16</volume><issue>3</issue><spage>174</spage><epage>177</epage><pages>174-177</pages><issn>2073-607X</issn><eissn>2076-0930</eissn><abstract>Stress detection is a critical area in mental health, impacting both individual well-being and productivity. Traditional methods of stress assessment are often subjective and time-consuming. Recent advancements in machine learning have opened new avenues for automatic stress detection using multimodal data fusion techniques, which integrate diverse data sources such as physiological signals, behavioral cues, and contextual information. This paper explores the state-of-the-art multimodal data fusion techniques for automatic stress detection, presenting a comprehensive literature review, detailed methodology, and an analysis of their efficacy. The study concludes by discussing the challenges, potential solutions, and future directions in the field.</abstract><cop>Kohat</cop><pub>Kohat University of Science and Technology (KUST)</pub></addata></record>
fulltext fulltext
identifier ISSN: 2073-607X
ispartof International journal of communication networks and information security, 2024-09, Vol.16 (3), p.174-177
issn 2073-607X
2076-0930
language eng
recordid cdi_proquest_journals_3108401956
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Algorithms
Data collection
Data integration
Datasets
Feature selection
Heart rate
Literature reviews
Machine learning
Mental health
Neural networks
Performance evaluation
Physiology
Principal components analysis
Questionnaires
Sensors
Smartphones
State-of-the-art reviews
Stress
Support vector machines
title Advancing Stress Detection with Machine Learning: A Study on Multimodal Data Integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20Stress%20Detection%20with%20Machine%20Learning:%20A%20Study%20on%20Multimodal%20Data%20Integration&rft.jtitle=International%20journal%20of%20communication%20networks%20and%20information%20security&rft.au=Gupta,%20Reshu&rft.date=2024-09-01&rft.volume=16&rft.issue=3&rft.spage=174&rft.epage=177&rft.pages=174-177&rft.issn=2073-607X&rft.eissn=2076-0930&rft_id=info:doi/&rft_dat=%3Cproquest%3E3108401956%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108401956&rft_id=info:pmid/&rfr_iscdi=true