Compressed hyperspectral imaging based on image reflection intensity and differential fusion filtering

Existing spectral imaging technology based on compressed coding requires tens of minutes or even hours to obtain higher-quality spectral data. This limits their use in real dynamic scenarios and can only be discussed theoretically. Therefore, we propose a non-iterative algorithm model based on image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2024-09, Vol.63 (27), p.7188
Hauptverfasser: Qu, Xiaorui, Zhao, Jufeng, Tian, Haijun, Zhu, Junjie, Cui, Guangmang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 27
container_start_page 7188
container_title Applied optics (2004)
container_volume 63
creator Qu, Xiaorui
Zhao, Jufeng
Tian, Haijun
Zhu, Junjie
Cui, Guangmang
description Existing spectral imaging technology based on compressed coding requires tens of minutes or even hours to obtain higher-quality spectral data. This limits their use in real dynamic scenarios and can only be discussed theoretically. Therefore, we propose a non-iterative algorithm model based on image reflection intensity-estimation aid (IRI-EA). The algorithm studies the approximate proportional relationship between the reflection strength of the RGB diagram and the corresponding spectrum image and reconstructs high-quality spectral data within about 20 s. By solving the difference map of the corresponding spectral scene, combining it with the spectral data of the IRI method, and introducing the total guidance (TG) filter, the reconstruction error can be significantly reduced, and the spectral reconstruction quality can be improved. Compared with other advanced methods, numerous experimental results indicate the advantages of this method in reconstruction quality and efficiency. Specifically, compared with the existing advanced methods, the average efficiency of our method has improved by at least 85%. Our reconstruction model opens up the possibility of processing real-time video and accelerating other methods.
doi_str_mv 10.1364/AO.531671
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3108397626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108397626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-411fbbc96051098b44ee4796b6c1065e5eec5a120f17d300f331b18b9014cae33</originalsourceid><addsrcrecordid>eNotUMtOwzAQtBBIlMKBP4jEiUOKN34kOVYVL6lSLiBxixxnXVylTrDdQ_8eh3La3dnZWc0Qcg90BUzyp3WzEgxkCRdkUYAQeRrEJVmkts6hqL6uyU0Ie0qZ4HW5IGYzHiaPIWCffZ8m9GFCHb0aMntQO-t2Wafm3ej-AMw8miEx7Ay4iC7YeMqU67PeGoMeXbTp2BzDzDB2iOiTyi25MmoIePdfl-Tz5flj85Zvm9f3zXqba-BlzDmA6TpdSyqA1lXHOSIva9lJDVQKFIhaKCiogbJnlBrGoIOqqylwrZCxJXk4605-_DliiO1-PHqXXrYMaMXqUhYysR7PLO3HEJKjdvLJnT-1QNs5xnbdtOcY2S_l_mYF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108397626</pqid></control><display><type>article</type><title>Compressed hyperspectral imaging based on image reflection intensity and differential fusion filtering</title><source>Optica Publishing Group Journals</source><creator>Qu, Xiaorui ; Zhao, Jufeng ; Tian, Haijun ; Zhu, Junjie ; Cui, Guangmang</creator><creatorcontrib>Qu, Xiaorui ; Zhao, Jufeng ; Tian, Haijun ; Zhu, Junjie ; Cui, Guangmang</creatorcontrib><description>Existing spectral imaging technology based on compressed coding requires tens of minutes or even hours to obtain higher-quality spectral data. This limits their use in real dynamic scenarios and can only be discussed theoretically. Therefore, we propose a non-iterative algorithm model based on image reflection intensity-estimation aid (IRI-EA). The algorithm studies the approximate proportional relationship between the reflection strength of the RGB diagram and the corresponding spectrum image and reconstructs high-quality spectral data within about 20 s. By solving the difference map of the corresponding spectral scene, combining it with the spectral data of the IRI method, and introducing the total guidance (TG) filter, the reconstruction error can be significantly reduced, and the spectral reconstruction quality can be improved. Compared with other advanced methods, numerous experimental results indicate the advantages of this method in reconstruction quality and efficiency. Specifically, compared with the existing advanced methods, the average efficiency of our method has improved by at least 85%. Our reconstruction model opens up the possibility of processing real-time video and accelerating other methods.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.531671</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Hyperspectral imaging ; Image coding ; Image filters ; Image quality ; Image reconstruction ; Iterative algorithms ; Real time</subject><ispartof>Applied optics (2004), 2024-09, Vol.63 (27), p.7188</ispartof><rights>Copyright Optical Society of America Sep 20, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-411fbbc96051098b44ee4796b6c1065e5eec5a120f17d300f331b18b9014cae33</cites><orcidid>0000-0001-9821-8179 ; 0000-0002-4491-5566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3245,27905,27906</link.rule.ids></links><search><creatorcontrib>Qu, Xiaorui</creatorcontrib><creatorcontrib>Zhao, Jufeng</creatorcontrib><creatorcontrib>Tian, Haijun</creatorcontrib><creatorcontrib>Zhu, Junjie</creatorcontrib><creatorcontrib>Cui, Guangmang</creatorcontrib><title>Compressed hyperspectral imaging based on image reflection intensity and differential fusion filtering</title><title>Applied optics (2004)</title><description>Existing spectral imaging technology based on compressed coding requires tens of minutes or even hours to obtain higher-quality spectral data. This limits their use in real dynamic scenarios and can only be discussed theoretically. Therefore, we propose a non-iterative algorithm model based on image reflection intensity-estimation aid (IRI-EA). The algorithm studies the approximate proportional relationship between the reflection strength of the RGB diagram and the corresponding spectrum image and reconstructs high-quality spectral data within about 20 s. By solving the difference map of the corresponding spectral scene, combining it with the spectral data of the IRI method, and introducing the total guidance (TG) filter, the reconstruction error can be significantly reduced, and the spectral reconstruction quality can be improved. Compared with other advanced methods, numerous experimental results indicate the advantages of this method in reconstruction quality and efficiency. Specifically, compared with the existing advanced methods, the average efficiency of our method has improved by at least 85%. Our reconstruction model opens up the possibility of processing real-time video and accelerating other methods.</description><subject>Hyperspectral imaging</subject><subject>Image coding</subject><subject>Image filters</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Iterative algorithms</subject><subject>Real time</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotUMtOwzAQtBBIlMKBP4jEiUOKN34kOVYVL6lSLiBxixxnXVylTrDdQ_8eh3La3dnZWc0Qcg90BUzyp3WzEgxkCRdkUYAQeRrEJVmkts6hqL6uyU0Ie0qZ4HW5IGYzHiaPIWCffZ8m9GFCHb0aMntQO-t2Wafm3ej-AMw8miEx7Ay4iC7YeMqU67PeGoMeXbTp2BzDzDB2iOiTyi25MmoIePdfl-Tz5flj85Zvm9f3zXqba-BlzDmA6TpdSyqA1lXHOSIva9lJDVQKFIhaKCiogbJnlBrGoIOqqylwrZCxJXk4605-_DliiO1-PHqXXrYMaMXqUhYysR7PLO3HEJKjdvLJnT-1QNs5xnbdtOcY2S_l_mYF</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Qu, Xiaorui</creator><creator>Zhao, Jufeng</creator><creator>Tian, Haijun</creator><creator>Zhu, Junjie</creator><creator>Cui, Guangmang</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9821-8179</orcidid><orcidid>https://orcid.org/0000-0002-4491-5566</orcidid></search><sort><creationdate>20240920</creationdate><title>Compressed hyperspectral imaging based on image reflection intensity and differential fusion filtering</title><author>Qu, Xiaorui ; Zhao, Jufeng ; Tian, Haijun ; Zhu, Junjie ; Cui, Guangmang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-411fbbc96051098b44ee4796b6c1065e5eec5a120f17d300f331b18b9014cae33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Hyperspectral imaging</topic><topic>Image coding</topic><topic>Image filters</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Iterative algorithms</topic><topic>Real time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Xiaorui</creatorcontrib><creatorcontrib>Zhao, Jufeng</creatorcontrib><creatorcontrib>Tian, Haijun</creatorcontrib><creatorcontrib>Zhu, Junjie</creatorcontrib><creatorcontrib>Cui, Guangmang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Xiaorui</au><au>Zhao, Jufeng</au><au>Tian, Haijun</au><au>Zhu, Junjie</au><au>Cui, Guangmang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressed hyperspectral imaging based on image reflection intensity and differential fusion filtering</atitle><jtitle>Applied optics (2004)</jtitle><date>2024-09-20</date><risdate>2024</risdate><volume>63</volume><issue>27</issue><spage>7188</spage><pages>7188-</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>Existing spectral imaging technology based on compressed coding requires tens of minutes or even hours to obtain higher-quality spectral data. This limits their use in real dynamic scenarios and can only be discussed theoretically. Therefore, we propose a non-iterative algorithm model based on image reflection intensity-estimation aid (IRI-EA). The algorithm studies the approximate proportional relationship between the reflection strength of the RGB diagram and the corresponding spectrum image and reconstructs high-quality spectral data within about 20 s. By solving the difference map of the corresponding spectral scene, combining it with the spectral data of the IRI method, and introducing the total guidance (TG) filter, the reconstruction error can be significantly reduced, and the spectral reconstruction quality can be improved. Compared with other advanced methods, numerous experimental results indicate the advantages of this method in reconstruction quality and efficiency. Specifically, compared with the existing advanced methods, the average efficiency of our method has improved by at least 85%. Our reconstruction model opens up the possibility of processing real-time video and accelerating other methods.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/AO.531671</doi><orcidid>https://orcid.org/0000-0001-9821-8179</orcidid><orcidid>https://orcid.org/0000-0002-4491-5566</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2024-09, Vol.63 (27), p.7188
issn 1559-128X
2155-3165
language eng
recordid cdi_proquest_journals_3108397626
source Optica Publishing Group Journals
subjects Hyperspectral imaging
Image coding
Image filters
Image quality
Image reconstruction
Iterative algorithms
Real time
title Compressed hyperspectral imaging based on image reflection intensity and differential fusion filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressed%20hyperspectral%20imaging%20based%20on%20image%20reflection%20intensity%20and%20differential%20fusion%20filtering&rft.jtitle=Applied%20optics%20(2004)&rft.au=Qu,%20Xiaorui&rft.date=2024-09-20&rft.volume=63&rft.issue=27&rft.spage=7188&rft.pages=7188-&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.531671&rft_dat=%3Cproquest_cross%3E3108397626%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108397626&rft_id=info:pmid/&rfr_iscdi=true