Entropy stable discontinuous Galerkin methods for the shallow water equations with subcell positivity preservation
High order schemes are known to be unstable in the presence of shock discontinuities or under‐resolved solution features, and have traditionally required additional filtering, limiting, or artificial viscosity to avoid solution blow up. Entropy stable schemes address this instability by ensuring tha...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2024-11, Vol.40 (6), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Numerical methods for partial differential equations |
container_volume | 40 |
creator | Wu, Xinhui Trask, Nathaniel Chan, Jesse |
description | High order schemes are known to be unstable in the presence of shock discontinuities or under‐resolved solution features, and have traditionally required additional filtering, limiting, or artificial viscosity to avoid solution blow up. Entropy stable schemes address this instability by ensuring that physically relevant solutions satisfy a semi‐discrete entropy inequality independently of discretization parameters. However, additional measures must be taken to ensure that solutions satisfy physical constraints such as positivity. In this work, we present a high order entropy stable discontinuous Galerkin (ESDG) method for the nonlinear shallow water equations (SWE) on two‐dimensional (2D) triangular meshes which preserves the positivity of the water heights. The scheme combines a low order positivity preserving method with a high order entropy stable method using convex limiting. This method is entropy stable and well‐balanced for fitted meshes with continuous bathymetry profiles. |
doi_str_mv | 10.1002/num.23129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3108297521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108297521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2229-6ad56d84af9310e20ae7ba0058a71f3991383b3903076d8a9cf3f3a6d17720943</originalsourceid><addsrcrecordid>eNp10DtPwzAUBWALgUQpDPwDS0wMaf3IyyOqSkEqsFCJzXISR3Fx49SPRvn3hIaV6S7fPUc6ANxjtMAIkWUbDgtCMWEXYIYRyyMSk_QSzFAWswgn7Osa3Di3RwjjBLMZsOvWW9MN0HlRaAkr5UrTetUGExzcCC3tt2rhQfrGVA7WxkLfSOgaobXpYS-8tFAeg_DKtA72yjfQhaKUWsPOOOXVSfkBdlY6aU9ndQuuaqGdvPu7c7B7Xn-uXqLtx-Z19bSNSkIIi1JRJWmVx6JmFCNJkJBZIRBKcpHhmjKGaU4LyhBF2egEK2taU5FWOMsIYjGdg4cpt7PmGKTzfG-CbcdKPgbmhGUJwaN6nFRpjXNW1ryz6iDswDHiv5PycVJ-nnS0y8n2Ssvhf8jfd2_Txw87tHqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108297521</pqid></control><display><type>article</type><title>Entropy stable discontinuous Galerkin methods for the shallow water equations with subcell positivity preservation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, Xinhui ; Trask, Nathaniel ; Chan, Jesse</creator><creatorcontrib>Wu, Xinhui ; Trask, Nathaniel ; Chan, Jesse</creatorcontrib><description>High order schemes are known to be unstable in the presence of shock discontinuities or under‐resolved solution features, and have traditionally required additional filtering, limiting, or artificial viscosity to avoid solution blow up. Entropy stable schemes address this instability by ensuring that physically relevant solutions satisfy a semi‐discrete entropy inequality independently of discretization parameters. However, additional measures must be taken to ensure that solutions satisfy physical constraints such as positivity. In this work, we present a high order entropy stable discontinuous Galerkin (ESDG) method for the nonlinear shallow water equations (SWE) on two‐dimensional (2D) triangular meshes which preserves the positivity of the water heights. The scheme combines a low order positivity preserving method with a high order entropy stable method using convex limiting. This method is entropy stable and well‐balanced for fitted meshes with continuous bathymetry profiles.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.23129</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Constraining ; Discontinuity ; Entropy ; entropy stable ; Galerkin method ; high order discontinuous Galerkin ; positivity preserving ; Shallow water equations ; Water purification ; well‐balanced</subject><ispartof>Numerical methods for partial differential equations, 2024-11, Vol.40 (6), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2229-6ad56d84af9310e20ae7ba0058a71f3991383b3903076d8a9cf3f3a6d17720943</cites><orcidid>0009-0005-2351-6346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.23129$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.23129$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Wu, Xinhui</creatorcontrib><creatorcontrib>Trask, Nathaniel</creatorcontrib><creatorcontrib>Chan, Jesse</creatorcontrib><title>Entropy stable discontinuous Galerkin methods for the shallow water equations with subcell positivity preservation</title><title>Numerical methods for partial differential equations</title><description>High order schemes are known to be unstable in the presence of shock discontinuities or under‐resolved solution features, and have traditionally required additional filtering, limiting, or artificial viscosity to avoid solution blow up. Entropy stable schemes address this instability by ensuring that physically relevant solutions satisfy a semi‐discrete entropy inequality independently of discretization parameters. However, additional measures must be taken to ensure that solutions satisfy physical constraints such as positivity. In this work, we present a high order entropy stable discontinuous Galerkin (ESDG) method for the nonlinear shallow water equations (SWE) on two‐dimensional (2D) triangular meshes which preserves the positivity of the water heights. The scheme combines a low order positivity preserving method with a high order entropy stable method using convex limiting. This method is entropy stable and well‐balanced for fitted meshes with continuous bathymetry profiles.</description><subject>Constraining</subject><subject>Discontinuity</subject><subject>Entropy</subject><subject>entropy stable</subject><subject>Galerkin method</subject><subject>high order discontinuous Galerkin</subject><subject>positivity preserving</subject><subject>Shallow water equations</subject><subject>Water purification</subject><subject>well‐balanced</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10DtPwzAUBWALgUQpDPwDS0wMaf3IyyOqSkEqsFCJzXISR3Fx49SPRvn3hIaV6S7fPUc6ANxjtMAIkWUbDgtCMWEXYIYRyyMSk_QSzFAWswgn7Osa3Di3RwjjBLMZsOvWW9MN0HlRaAkr5UrTetUGExzcCC3tt2rhQfrGVA7WxkLfSOgaobXpYS-8tFAeg_DKtA72yjfQhaKUWsPOOOXVSfkBdlY6aU9ndQuuaqGdvPu7c7B7Xn-uXqLtx-Z19bSNSkIIi1JRJWmVx6JmFCNJkJBZIRBKcpHhmjKGaU4LyhBF2egEK2taU5FWOMsIYjGdg4cpt7PmGKTzfG-CbcdKPgbmhGUJwaN6nFRpjXNW1ryz6iDswDHiv5PycVJ-nnS0y8n2Ssvhf8jfd2_Txw87tHqA</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Wu, Xinhui</creator><creator>Trask, Nathaniel</creator><creator>Chan, Jesse</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0005-2351-6346</orcidid></search><sort><creationdate>202411</creationdate><title>Entropy stable discontinuous Galerkin methods for the shallow water equations with subcell positivity preservation</title><author>Wu, Xinhui ; Trask, Nathaniel ; Chan, Jesse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2229-6ad56d84af9310e20ae7ba0058a71f3991383b3903076d8a9cf3f3a6d17720943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Constraining</topic><topic>Discontinuity</topic><topic>Entropy</topic><topic>entropy stable</topic><topic>Galerkin method</topic><topic>high order discontinuous Galerkin</topic><topic>positivity preserving</topic><topic>Shallow water equations</topic><topic>Water purification</topic><topic>well‐balanced</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xinhui</creatorcontrib><creatorcontrib>Trask, Nathaniel</creatorcontrib><creatorcontrib>Chan, Jesse</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xinhui</au><au>Trask, Nathaniel</au><au>Chan, Jesse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy stable discontinuous Galerkin methods for the shallow water equations with subcell positivity preservation</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2024-11</date><risdate>2024</risdate><volume>40</volume><issue>6</issue><epage>n/a</epage><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>High order schemes are known to be unstable in the presence of shock discontinuities or under‐resolved solution features, and have traditionally required additional filtering, limiting, or artificial viscosity to avoid solution blow up. Entropy stable schemes address this instability by ensuring that physically relevant solutions satisfy a semi‐discrete entropy inequality independently of discretization parameters. However, additional measures must be taken to ensure that solutions satisfy physical constraints such as positivity. In this work, we present a high order entropy stable discontinuous Galerkin (ESDG) method for the nonlinear shallow water equations (SWE) on two‐dimensional (2D) triangular meshes which preserves the positivity of the water heights. The scheme combines a low order positivity preserving method with a high order entropy stable method using convex limiting. This method is entropy stable and well‐balanced for fitted meshes with continuous bathymetry profiles.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/num.23129</doi><tpages>32</tpages><orcidid>https://orcid.org/0009-0005-2351-6346</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 2024-11, Vol.40 (6), p.n/a |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_proquest_journals_3108297521 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Constraining Discontinuity Entropy entropy stable Galerkin method high order discontinuous Galerkin positivity preserving Shallow water equations Water purification well‐balanced |
title | Entropy stable discontinuous Galerkin methods for the shallow water equations with subcell positivity preservation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20stable%20discontinuous%20Galerkin%20methods%20for%20the%20shallow%20water%20equations%20with%20subcell%20positivity%20preservation&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Wu,%20Xinhui&rft.date=2024-11&rft.volume=40&rft.issue=6&rft.epage=n/a&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.23129&rft_dat=%3Cproquest_cross%3E3108297521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108297521&rft_id=info:pmid/&rfr_iscdi=true |