Entropy stable discontinuous Galerkin methods for the shallow water equations with subcell positivity preservation

High order schemes are known to be unstable in the presence of shock discontinuities or under‐resolved solution features, and have traditionally required additional filtering, limiting, or artificial viscosity to avoid solution blow up. Entropy stable schemes address this instability by ensuring tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2024-11, Vol.40 (6), p.n/a
Hauptverfasser: Wu, Xinhui, Trask, Nathaniel, Chan, Jesse
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Numerical methods for partial differential equations
container_volume 40
creator Wu, Xinhui
Trask, Nathaniel
Chan, Jesse
description High order schemes are known to be unstable in the presence of shock discontinuities or under‐resolved solution features, and have traditionally required additional filtering, limiting, or artificial viscosity to avoid solution blow up. Entropy stable schemes address this instability by ensuring that physically relevant solutions satisfy a semi‐discrete entropy inequality independently of discretization parameters. However, additional measures must be taken to ensure that solutions satisfy physical constraints such as positivity. In this work, we present a high order entropy stable discontinuous Galerkin (ESDG) method for the nonlinear shallow water equations (SWE) on two‐dimensional (2D) triangular meshes which preserves the positivity of the water heights. The scheme combines a low order positivity preserving method with a high order entropy stable method using convex limiting. This method is entropy stable and well‐balanced for fitted meshes with continuous bathymetry profiles.
doi_str_mv 10.1002/num.23129
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3108297521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108297521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2229-6ad56d84af9310e20ae7ba0058a71f3991383b3903076d8a9cf3f3a6d17720943</originalsourceid><addsrcrecordid>eNp10DtPwzAUBWALgUQpDPwDS0wMaf3IyyOqSkEqsFCJzXISR3Fx49SPRvn3hIaV6S7fPUc6ANxjtMAIkWUbDgtCMWEXYIYRyyMSk_QSzFAWswgn7Osa3Di3RwjjBLMZsOvWW9MN0HlRaAkr5UrTetUGExzcCC3tt2rhQfrGVA7WxkLfSOgaobXpYS-8tFAeg_DKtA72yjfQhaKUWsPOOOXVSfkBdlY6aU9ndQuuaqGdvPu7c7B7Xn-uXqLtx-Z19bSNSkIIi1JRJWmVx6JmFCNJkJBZIRBKcpHhmjKGaU4LyhBF2egEK2taU5FWOMsIYjGdg4cpt7PmGKTzfG-CbcdKPgbmhGUJwaN6nFRpjXNW1ryz6iDswDHiv5PycVJ-nnS0y8n2Ssvhf8jfd2_Txw87tHqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108297521</pqid></control><display><type>article</type><title>Entropy stable discontinuous Galerkin methods for the shallow water equations with subcell positivity preservation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, Xinhui ; Trask, Nathaniel ; Chan, Jesse</creator><creatorcontrib>Wu, Xinhui ; Trask, Nathaniel ; Chan, Jesse</creatorcontrib><description>High order schemes are known to be unstable in the presence of shock discontinuities or under‐resolved solution features, and have traditionally required additional filtering, limiting, or artificial viscosity to avoid solution blow up. Entropy stable schemes address this instability by ensuring that physically relevant solutions satisfy a semi‐discrete entropy inequality independently of discretization parameters. However, additional measures must be taken to ensure that solutions satisfy physical constraints such as positivity. In this work, we present a high order entropy stable discontinuous Galerkin (ESDG) method for the nonlinear shallow water equations (SWE) on two‐dimensional (2D) triangular meshes which preserves the positivity of the water heights. The scheme combines a low order positivity preserving method with a high order entropy stable method using convex limiting. This method is entropy stable and well‐balanced for fitted meshes with continuous bathymetry profiles.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.23129</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Constraining ; Discontinuity ; Entropy ; entropy stable ; Galerkin method ; high order discontinuous Galerkin ; positivity preserving ; Shallow water equations ; Water purification ; well‐balanced</subject><ispartof>Numerical methods for partial differential equations, 2024-11, Vol.40 (6), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2229-6ad56d84af9310e20ae7ba0058a71f3991383b3903076d8a9cf3f3a6d17720943</cites><orcidid>0009-0005-2351-6346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.23129$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.23129$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Wu, Xinhui</creatorcontrib><creatorcontrib>Trask, Nathaniel</creatorcontrib><creatorcontrib>Chan, Jesse</creatorcontrib><title>Entropy stable discontinuous Galerkin methods for the shallow water equations with subcell positivity preservation</title><title>Numerical methods for partial differential equations</title><description>High order schemes are known to be unstable in the presence of shock discontinuities or under‐resolved solution features, and have traditionally required additional filtering, limiting, or artificial viscosity to avoid solution blow up. Entropy stable schemes address this instability by ensuring that physically relevant solutions satisfy a semi‐discrete entropy inequality independently of discretization parameters. However, additional measures must be taken to ensure that solutions satisfy physical constraints such as positivity. In this work, we present a high order entropy stable discontinuous Galerkin (ESDG) method for the nonlinear shallow water equations (SWE) on two‐dimensional (2D) triangular meshes which preserves the positivity of the water heights. The scheme combines a low order positivity preserving method with a high order entropy stable method using convex limiting. This method is entropy stable and well‐balanced for fitted meshes with continuous bathymetry profiles.</description><subject>Constraining</subject><subject>Discontinuity</subject><subject>Entropy</subject><subject>entropy stable</subject><subject>Galerkin method</subject><subject>high order discontinuous Galerkin</subject><subject>positivity preserving</subject><subject>Shallow water equations</subject><subject>Water purification</subject><subject>well‐balanced</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10DtPwzAUBWALgUQpDPwDS0wMaf3IyyOqSkEqsFCJzXISR3Fx49SPRvn3hIaV6S7fPUc6ANxjtMAIkWUbDgtCMWEXYIYRyyMSk_QSzFAWswgn7Osa3Di3RwjjBLMZsOvWW9MN0HlRaAkr5UrTetUGExzcCC3tt2rhQfrGVA7WxkLfSOgaobXpYS-8tFAeg_DKtA72yjfQhaKUWsPOOOXVSfkBdlY6aU9ndQuuaqGdvPu7c7B7Xn-uXqLtx-Z19bSNSkIIi1JRJWmVx6JmFCNJkJBZIRBKcpHhmjKGaU4LyhBF2egEK2taU5FWOMsIYjGdg4cpt7PmGKTzfG-CbcdKPgbmhGUJwaN6nFRpjXNW1ryz6iDswDHiv5PycVJ-nnS0y8n2Ssvhf8jfd2_Txw87tHqA</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Wu, Xinhui</creator><creator>Trask, Nathaniel</creator><creator>Chan, Jesse</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0005-2351-6346</orcidid></search><sort><creationdate>202411</creationdate><title>Entropy stable discontinuous Galerkin methods for the shallow water equations with subcell positivity preservation</title><author>Wu, Xinhui ; Trask, Nathaniel ; Chan, Jesse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2229-6ad56d84af9310e20ae7ba0058a71f3991383b3903076d8a9cf3f3a6d17720943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Constraining</topic><topic>Discontinuity</topic><topic>Entropy</topic><topic>entropy stable</topic><topic>Galerkin method</topic><topic>high order discontinuous Galerkin</topic><topic>positivity preserving</topic><topic>Shallow water equations</topic><topic>Water purification</topic><topic>well‐balanced</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xinhui</creatorcontrib><creatorcontrib>Trask, Nathaniel</creatorcontrib><creatorcontrib>Chan, Jesse</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xinhui</au><au>Trask, Nathaniel</au><au>Chan, Jesse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy stable discontinuous Galerkin methods for the shallow water equations with subcell positivity preservation</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2024-11</date><risdate>2024</risdate><volume>40</volume><issue>6</issue><epage>n/a</epage><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>High order schemes are known to be unstable in the presence of shock discontinuities or under‐resolved solution features, and have traditionally required additional filtering, limiting, or artificial viscosity to avoid solution blow up. Entropy stable schemes address this instability by ensuring that physically relevant solutions satisfy a semi‐discrete entropy inequality independently of discretization parameters. However, additional measures must be taken to ensure that solutions satisfy physical constraints such as positivity. In this work, we present a high order entropy stable discontinuous Galerkin (ESDG) method for the nonlinear shallow water equations (SWE) on two‐dimensional (2D) triangular meshes which preserves the positivity of the water heights. The scheme combines a low order positivity preserving method with a high order entropy stable method using convex limiting. This method is entropy stable and well‐balanced for fitted meshes with continuous bathymetry profiles.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.23129</doi><tpages>32</tpages><orcidid>https://orcid.org/0009-0005-2351-6346</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2024-11, Vol.40 (6), p.n/a
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_3108297521
source Wiley Online Library Journals Frontfile Complete
subjects Constraining
Discontinuity
Entropy
entropy stable
Galerkin method
high order discontinuous Galerkin
positivity preserving
Shallow water equations
Water purification
well‐balanced
title Entropy stable discontinuous Galerkin methods for the shallow water equations with subcell positivity preservation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20stable%20discontinuous%20Galerkin%20methods%20for%20the%20shallow%20water%20equations%20with%20subcell%20positivity%20preservation&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Wu,%20Xinhui&rft.date=2024-11&rft.volume=40&rft.issue=6&rft.epage=n/a&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.23129&rft_dat=%3Cproquest_cross%3E3108297521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108297521&rft_id=info:pmid/&rfr_iscdi=true