A Novel Correlated Microstructure Elements Descriptor for Image Retrieval

In recent years, substantial progress has been made in developing new descriptors to enhance content-based image retrieval (CBIR) systems. These advancements often focus on leveraging the relationship between low-level features such as color and texture. This study introduces the Correlated Microstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Traitement du signal 2024-08, Vol.41 (4), p.1885-1897
Hauptverfasser: Aguilar-Domínguez, Kevin Salvador, Pinto-Elías, Raúl, González-Serna, Gabriel, Magadán-Salazar, Andrea
Format: Artikel
Sprache:eng ; fre
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1897
container_issue 4
container_start_page 1885
container_title Traitement du signal
container_volume 41
creator Aguilar-Domínguez, Kevin Salvador
Pinto-Elías, Raúl
González-Serna, Gabriel
Magadán-Salazar, Andrea
description In recent years, substantial progress has been made in developing new descriptors to enhance content-based image retrieval (CBIR) systems. These advancements often focus on leveraging the relationship between low-level features such as color and texture. This study introduces the Correlated Microstructures Elements Descriptor (CMED), a novel descriptor that integrates three low-level features to improve image retrieval performance. Our experiments on three distinct natural image datasets reveal that CMED significantly outperforms both classical and state-of-the-art descriptors. The proposed algorithm demonstrates superior indexing and retrieval capabilities, achieving up to 26.41% improvement compared to the MPEG-7 standard and 10.75% compared to contemporary state-of-the-art descriptors. The findings underscore CMED's potential to advance the field of CBIR, offering robust solutions for accurately retrieving images based on semantic content.
doi_str_mv 10.18280/ts.410419
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3107679367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107679367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-9373c9d1040cac49762cad2c7f25d068a8f2fe3179c8ed395eac84850ee2713f3</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWGovfoKAN2FrstnNn2NZqy5UBdFzCNmJbNl26yRb8NsbrQOPufx4M-8Rcs3ZkutSs7sUlxVnFTdnZMZNrYtaMn1OZkzJumCMm0uyiHHL8gheSSlmpF3Rl_EIA21GRBhcgo4-9x7HmHDyaUKg6wF2sE-R3kP02B_SiDRktTv3CfQNEvZwdMMVuQhuiLD433Py8bB-b56Kzetj26w2heeVToURSnjT5TeZd74ySpbedaVXoaw7JrXToQwguDJeQydMDc7rStcMoFRcBDEnNyffA45fE8Rkt-OE-3zSCp6TKiOkytTtifqNEhGCPWC_c_htObN_bdkU7akt8QPYn1wn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107679367</pqid></control><display><type>article</type><title>A Novel Correlated Microstructure Elements Descriptor for Image Retrieval</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Aguilar-Domínguez, Kevin Salvador ; Pinto-Elías, Raúl ; González-Serna, Gabriel ; Magadán-Salazar, Andrea</creator><creatorcontrib>Aguilar-Domínguez, Kevin Salvador ; Pinto-Elías, Raúl ; González-Serna, Gabriel ; Magadán-Salazar, Andrea</creatorcontrib><description>In recent years, substantial progress has been made in developing new descriptors to enhance content-based image retrieval (CBIR) systems. These advancements often focus on leveraging the relationship between low-level features such as color and texture. This study introduces the Correlated Microstructures Elements Descriptor (CMED), a novel descriptor that integrates three low-level features to improve image retrieval performance. Our experiments on three distinct natural image datasets reveal that CMED significantly outperforms both classical and state-of-the-art descriptors. The proposed algorithm demonstrates superior indexing and retrieval capabilities, achieving up to 26.41% improvement compared to the MPEG-7 standard and 10.75% compared to contemporary state-of-the-art descriptors. The findings underscore CMED's potential to advance the field of CBIR, offering robust solutions for accurately retrieving images based on semantic content.</description><identifier>ISSN: 0765-0019</identifier><identifier>EISSN: 1958-5608</identifier><identifier>DOI: 10.18280/ts.410419</identifier><language>eng ; fre</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Algorithms ; Histograms ; Image enhancement ; Image retrieval ; Microstructure ; Multimedia ; Retrieval ; Semantics</subject><ispartof>Traitement du signal, 2024-08, Vol.41 (4), p.1885-1897</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Aguilar-Domínguez, Kevin Salvador</creatorcontrib><creatorcontrib>Pinto-Elías, Raúl</creatorcontrib><creatorcontrib>González-Serna, Gabriel</creatorcontrib><creatorcontrib>Magadán-Salazar, Andrea</creatorcontrib><title>A Novel Correlated Microstructure Elements Descriptor for Image Retrieval</title><title>Traitement du signal</title><description>In recent years, substantial progress has been made in developing new descriptors to enhance content-based image retrieval (CBIR) systems. These advancements often focus on leveraging the relationship between low-level features such as color and texture. This study introduces the Correlated Microstructures Elements Descriptor (CMED), a novel descriptor that integrates three low-level features to improve image retrieval performance. Our experiments on three distinct natural image datasets reveal that CMED significantly outperforms both classical and state-of-the-art descriptors. The proposed algorithm demonstrates superior indexing and retrieval capabilities, achieving up to 26.41% improvement compared to the MPEG-7 standard and 10.75% compared to contemporary state-of-the-art descriptors. The findings underscore CMED's potential to advance the field of CBIR, offering robust solutions for accurately retrieving images based on semantic content.</description><subject>Algorithms</subject><subject>Histograms</subject><subject>Image enhancement</subject><subject>Image retrieval</subject><subject>Microstructure</subject><subject>Multimedia</subject><subject>Retrieval</subject><subject>Semantics</subject><issn>0765-0019</issn><issn>1958-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkE9LAzEQxYMoWGovfoKAN2FrstnNn2NZqy5UBdFzCNmJbNl26yRb8NsbrQOPufx4M-8Rcs3ZkutSs7sUlxVnFTdnZMZNrYtaMn1OZkzJumCMm0uyiHHL8gheSSlmpF3Rl_EIA21GRBhcgo4-9x7HmHDyaUKg6wF2sE-R3kP02B_SiDRktTv3CfQNEvZwdMMVuQhuiLD433Py8bB-b56Kzetj26w2heeVToURSnjT5TeZd74ySpbedaVXoaw7JrXToQwguDJeQydMDc7rStcMoFRcBDEnNyffA45fE8Rkt-OE-3zSCp6TKiOkytTtifqNEhGCPWC_c_htObN_bdkU7akt8QPYn1wn</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Aguilar-Domínguez, Kevin Salvador</creator><creator>Pinto-Elías, Raúl</creator><creator>González-Serna, Gabriel</creator><creator>Magadán-Salazar, Andrea</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240801</creationdate><title>A Novel Correlated Microstructure Elements Descriptor for Image Retrieval</title><author>Aguilar-Domínguez, Kevin Salvador ; Pinto-Elías, Raúl ; González-Serna, Gabriel ; Magadán-Salazar, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-9373c9d1040cac49762cad2c7f25d068a8f2fe3179c8ed395eac84850ee2713f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; fre</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Histograms</topic><topic>Image enhancement</topic><topic>Image retrieval</topic><topic>Microstructure</topic><topic>Multimedia</topic><topic>Retrieval</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguilar-Domínguez, Kevin Salvador</creatorcontrib><creatorcontrib>Pinto-Elías, Raúl</creatorcontrib><creatorcontrib>González-Serna, Gabriel</creatorcontrib><creatorcontrib>Magadán-Salazar, Andrea</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Traitement du signal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguilar-Domínguez, Kevin Salvador</au><au>Pinto-Elías, Raúl</au><au>González-Serna, Gabriel</au><au>Magadán-Salazar, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Correlated Microstructure Elements Descriptor for Image Retrieval</atitle><jtitle>Traitement du signal</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>41</volume><issue>4</issue><spage>1885</spage><epage>1897</epage><pages>1885-1897</pages><issn>0765-0019</issn><eissn>1958-5608</eissn><abstract>In recent years, substantial progress has been made in developing new descriptors to enhance content-based image retrieval (CBIR) systems. These advancements often focus on leveraging the relationship between low-level features such as color and texture. This study introduces the Correlated Microstructures Elements Descriptor (CMED), a novel descriptor that integrates three low-level features to improve image retrieval performance. Our experiments on three distinct natural image datasets reveal that CMED significantly outperforms both classical and state-of-the-art descriptors. The proposed algorithm demonstrates superior indexing and retrieval capabilities, achieving up to 26.41% improvement compared to the MPEG-7 standard and 10.75% compared to contemporary state-of-the-art descriptors. The findings underscore CMED's potential to advance the field of CBIR, offering robust solutions for accurately retrieving images based on semantic content.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/ts.410419</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0765-0019
ispartof Traitement du signal, 2024-08, Vol.41 (4), p.1885-1897
issn 0765-0019
1958-5608
language eng ; fre
recordid cdi_proquest_journals_3107679367
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Histograms
Image enhancement
Image retrieval
Microstructure
Multimedia
Retrieval
Semantics
title A Novel Correlated Microstructure Elements Descriptor for Image Retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Correlated%20Microstructure%20Elements%20Descriptor%20for%20Image%20Retrieval&rft.jtitle=Traitement%20du%20signal&rft.au=Aguilar-Dom%C3%ADnguez,%20Kevin%20Salvador&rft.date=2024-08-01&rft.volume=41&rft.issue=4&rft.spage=1885&rft.epage=1897&rft.pages=1885-1897&rft.issn=0765-0019&rft.eissn=1958-5608&rft_id=info:doi/10.18280/ts.410419&rft_dat=%3Cproquest_cross%3E3107679367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107679367&rft_id=info:pmid/&rfr_iscdi=true