Empirical Characterization and Modeling of Cohesive – to – Adhesive Shear Fracture Mode Transition due to Increased Adhesive Layer Thicknesses of Fiber Reinforced Composite Single – Lap Joints

To ensure a strong adhesive bond, most standards and adhesive manufacturers specify a maximum adhesive gap of 1 mm when bonding fiber reinforced composite structures. In manufacturing large components, such as joining two halves of wind turbine blades, meeting this gap tolerance specification is imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied composite materials 2024-10, Vol.31 (5), p.1547-1570
Hauptverfasser: Caltagirone, Peter E., Cousins, Dylan S., Swan, Dana, Snowberg, David, Berger, John R., Stebner, Aaron P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1570
container_issue 5
container_start_page 1547
container_title Applied composite materials
container_volume 31
creator Caltagirone, Peter E.
Cousins, Dylan S.
Swan, Dana
Snowberg, David
Berger, John R.
Stebner, Aaron P.
description To ensure a strong adhesive bond, most standards and adhesive manufacturers specify a maximum adhesive gap of 1 mm when bonding fiber reinforced composite structures. In manufacturing large components, such as joining two halves of wind turbine blades, meeting this gap tolerance specification is impractical; gaps larger than 10 mm are common in large adhesively bonded composite structures using state-of-the-art manufacturing techniques. Currently, there is a lack of fundamental understanding of the failure mechanics of adhesive gaps larger than 3 mm. To create such understanding, glass fiber – acrylic thermoplastic composite panels bonded using different epoxy adhesives within single-lap joint samples with adhesive thicknesses of 0.1 mm, 0.3 mm, 1 mm, 3 mm, 5 mm, and 10 mm were sheared to failure. A transition from cohesive to adhesive failure was observed to occur about 1 mm to 3 mm joint thicknesses. Plotting the shear stress normalized by the ratio of the joint width to thickness as a function of the joint thickness normalized by the joint length is shown to result in the ability to fit simple empirically derived models of the cohesive-to-adhesive failure transition, regardless of the adhesive. Furthermore, using these normalized variables, all the observed cohesively failed specimens collapse to a single master curve, as do the adhesively failed specimens.
doi_str_mv 10.1007/s10443-024-10251-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3107314092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107314092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-bb436936ca66acf03121a4cc141a83d59f161c8495d42676a63830c29250aad33</originalsourceid><addsrcrecordid>eNp9kc1qGzEUhUVoIW7aF8hK0PU0-hvNzDIMcZvgUmhd6E5ca-7ESmxpKo0LzirvkHfKg_RJKnsC2XV14XK-cy73EHLO2SfOWHWROFNKFkyogjNR8mJ_Qma8rGSh6qZ6Q2asEU3B6-bXKXmX0h1jrK50NSPPV9vBRWdhQ9s1RLAjRvcAowuegu_o19DhxvlbGnrahjUm9wfp38cnOobjuOxedj_WCJHODw67iEeOLiP45I5e3Q4PyLW3ESFh9wouYI-RLtfO3ntMCdMhau5Wefkdne9DtFnehu0QslcOytdsphsWMNCb4PyY3pO3PWwSfniZZ-Tn_GrZfikW3z5ft5eLwgrGxmK1UlI3UlvQGmzPJBcclLVccahlVzY919zWqik7JXSlQctaMisaUTKATsoz8nHyHWL4vcM0mruwiz5HGslZJbnKj84qMalsDClF7M0Q3Rbi3nBmDn2ZqS-T-zLHvsw-Q3KCUhb7W4yv1v-h_gFoOJ3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107314092</pqid></control><display><type>article</type><title>Empirical Characterization and Modeling of Cohesive – to – Adhesive Shear Fracture Mode Transition due to Increased Adhesive Layer Thicknesses of Fiber Reinforced Composite Single – Lap Joints</title><source>Springer Nature - Complete Springer Journals</source><creator>Caltagirone, Peter E. ; Cousins, Dylan S. ; Swan, Dana ; Snowberg, David ; Berger, John R. ; Stebner, Aaron P.</creator><creatorcontrib>Caltagirone, Peter E. ; Cousins, Dylan S. ; Swan, Dana ; Snowberg, David ; Berger, John R. ; Stebner, Aaron P.</creatorcontrib><description>To ensure a strong adhesive bond, most standards and adhesive manufacturers specify a maximum adhesive gap of 1 mm when bonding fiber reinforced composite structures. In manufacturing large components, such as joining two halves of wind turbine blades, meeting this gap tolerance specification is impractical; gaps larger than 10 mm are common in large adhesively bonded composite structures using state-of-the-art manufacturing techniques. Currently, there is a lack of fundamental understanding of the failure mechanics of adhesive gaps larger than 3 mm. To create such understanding, glass fiber – acrylic thermoplastic composite panels bonded using different epoxy adhesives within single-lap joint samples with adhesive thicknesses of 0.1 mm, 0.3 mm, 1 mm, 3 mm, 5 mm, and 10 mm were sheared to failure. A transition from cohesive to adhesive failure was observed to occur about 1 mm to 3 mm joint thicknesses. Plotting the shear stress normalized by the ratio of the joint width to thickness as a function of the joint thickness normalized by the joint length is shown to result in the ability to fit simple empirically derived models of the cohesive-to-adhesive failure transition, regardless of the adhesive. Furthermore, using these normalized variables, all the observed cohesively failed specimens collapse to a single master curve, as do the adhesively failed specimens.</description><identifier>ISSN: 0929-189X</identifier><identifier>EISSN: 1573-4897</identifier><identifier>DOI: 10.1007/s10443-024-10251-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adhesive bonding ; Adhesive joints ; Adhesive strength ; Bond strength ; Bonded joints ; Bonding strength ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Cohesion ; Composite structures ; Epoxy adhesives ; Failure ; Fiber composites ; Glass fiber reinforced plastics ; Glass-epoxy composites ; Industrial Chemistry/Chemical Engineering ; Lap joints ; Manufacturing ; Materials Science ; Plant layout ; Polymer Sciences ; Shear stress ; Thickness ; Turbine blades ; Wind turbines</subject><ispartof>Applied composite materials, 2024-10, Vol.31 (5), p.1547-1570</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-bb436936ca66acf03121a4cc141a83d59f161c8495d42676a63830c29250aad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10443-024-10251-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10443-024-10251-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Caltagirone, Peter E.</creatorcontrib><creatorcontrib>Cousins, Dylan S.</creatorcontrib><creatorcontrib>Swan, Dana</creatorcontrib><creatorcontrib>Snowberg, David</creatorcontrib><creatorcontrib>Berger, John R.</creatorcontrib><creatorcontrib>Stebner, Aaron P.</creatorcontrib><title>Empirical Characterization and Modeling of Cohesive – to – Adhesive Shear Fracture Mode Transition due to Increased Adhesive Layer Thicknesses of Fiber Reinforced Composite Single – Lap Joints</title><title>Applied composite materials</title><addtitle>Appl Compos Mater</addtitle><description>To ensure a strong adhesive bond, most standards and adhesive manufacturers specify a maximum adhesive gap of 1 mm when bonding fiber reinforced composite structures. In manufacturing large components, such as joining two halves of wind turbine blades, meeting this gap tolerance specification is impractical; gaps larger than 10 mm are common in large adhesively bonded composite structures using state-of-the-art manufacturing techniques. Currently, there is a lack of fundamental understanding of the failure mechanics of adhesive gaps larger than 3 mm. To create such understanding, glass fiber – acrylic thermoplastic composite panels bonded using different epoxy adhesives within single-lap joint samples with adhesive thicknesses of 0.1 mm, 0.3 mm, 1 mm, 3 mm, 5 mm, and 10 mm were sheared to failure. A transition from cohesive to adhesive failure was observed to occur about 1 mm to 3 mm joint thicknesses. Plotting the shear stress normalized by the ratio of the joint width to thickness as a function of the joint thickness normalized by the joint length is shown to result in the ability to fit simple empirically derived models of the cohesive-to-adhesive failure transition, regardless of the adhesive. Furthermore, using these normalized variables, all the observed cohesively failed specimens collapse to a single master curve, as do the adhesively failed specimens.</description><subject>Adhesive bonding</subject><subject>Adhesive joints</subject><subject>Adhesive strength</subject><subject>Bond strength</subject><subject>Bonded joints</subject><subject>Bonding strength</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cohesion</subject><subject>Composite structures</subject><subject>Epoxy adhesives</subject><subject>Failure</subject><subject>Fiber composites</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass-epoxy composites</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Lap joints</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Plant layout</subject><subject>Polymer Sciences</subject><subject>Shear stress</subject><subject>Thickness</subject><subject>Turbine blades</subject><subject>Wind turbines</subject><issn>0929-189X</issn><issn>1573-4897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1qGzEUhUVoIW7aF8hK0PU0-hvNzDIMcZvgUmhd6E5ca-7ESmxpKo0LzirvkHfKg_RJKnsC2XV14XK-cy73EHLO2SfOWHWROFNKFkyogjNR8mJ_Qma8rGSh6qZ6Q2asEU3B6-bXKXmX0h1jrK50NSPPV9vBRWdhQ9s1RLAjRvcAowuegu_o19DhxvlbGnrahjUm9wfp38cnOobjuOxedj_WCJHODw67iEeOLiP45I5e3Q4PyLW3ESFh9wouYI-RLtfO3ntMCdMhau5Wefkdne9DtFnehu0QslcOytdsphsWMNCb4PyY3pO3PWwSfniZZ-Tn_GrZfikW3z5ft5eLwgrGxmK1UlI3UlvQGmzPJBcclLVccahlVzY919zWqik7JXSlQctaMisaUTKATsoz8nHyHWL4vcM0mruwiz5HGslZJbnKj84qMalsDClF7M0Q3Rbi3nBmDn2ZqS-T-zLHvsw-Q3KCUhb7W4yv1v-h_gFoOJ3Y</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Caltagirone, Peter E.</creator><creator>Cousins, Dylan S.</creator><creator>Swan, Dana</creator><creator>Snowberg, David</creator><creator>Berger, John R.</creator><creator>Stebner, Aaron P.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20241001</creationdate><title>Empirical Characterization and Modeling of Cohesive – to – Adhesive Shear Fracture Mode Transition due to Increased Adhesive Layer Thicknesses of Fiber Reinforced Composite Single – Lap Joints</title><author>Caltagirone, Peter E. ; Cousins, Dylan S. ; Swan, Dana ; Snowberg, David ; Berger, John R. ; Stebner, Aaron P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-bb436936ca66acf03121a4cc141a83d59f161c8495d42676a63830c29250aad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesive bonding</topic><topic>Adhesive joints</topic><topic>Adhesive strength</topic><topic>Bond strength</topic><topic>Bonded joints</topic><topic>Bonding strength</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cohesion</topic><topic>Composite structures</topic><topic>Epoxy adhesives</topic><topic>Failure</topic><topic>Fiber composites</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass-epoxy composites</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Lap joints</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Plant layout</topic><topic>Polymer Sciences</topic><topic>Shear stress</topic><topic>Thickness</topic><topic>Turbine blades</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caltagirone, Peter E.</creatorcontrib><creatorcontrib>Cousins, Dylan S.</creatorcontrib><creatorcontrib>Swan, Dana</creatorcontrib><creatorcontrib>Snowberg, David</creatorcontrib><creatorcontrib>Berger, John R.</creatorcontrib><creatorcontrib>Stebner, Aaron P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Applied composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caltagirone, Peter E.</au><au>Cousins, Dylan S.</au><au>Swan, Dana</au><au>Snowberg, David</au><au>Berger, John R.</au><au>Stebner, Aaron P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical Characterization and Modeling of Cohesive – to – Adhesive Shear Fracture Mode Transition due to Increased Adhesive Layer Thicknesses of Fiber Reinforced Composite Single – Lap Joints</atitle><jtitle>Applied composite materials</jtitle><stitle>Appl Compos Mater</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>31</volume><issue>5</issue><spage>1547</spage><epage>1570</epage><pages>1547-1570</pages><issn>0929-189X</issn><eissn>1573-4897</eissn><abstract>To ensure a strong adhesive bond, most standards and adhesive manufacturers specify a maximum adhesive gap of 1 mm when bonding fiber reinforced composite structures. In manufacturing large components, such as joining two halves of wind turbine blades, meeting this gap tolerance specification is impractical; gaps larger than 10 mm are common in large adhesively bonded composite structures using state-of-the-art manufacturing techniques. Currently, there is a lack of fundamental understanding of the failure mechanics of adhesive gaps larger than 3 mm. To create such understanding, glass fiber – acrylic thermoplastic composite panels bonded using different epoxy adhesives within single-lap joint samples with adhesive thicknesses of 0.1 mm, 0.3 mm, 1 mm, 3 mm, 5 mm, and 10 mm were sheared to failure. A transition from cohesive to adhesive failure was observed to occur about 1 mm to 3 mm joint thicknesses. Plotting the shear stress normalized by the ratio of the joint width to thickness as a function of the joint thickness normalized by the joint length is shown to result in the ability to fit simple empirically derived models of the cohesive-to-adhesive failure transition, regardless of the adhesive. Furthermore, using these normalized variables, all the observed cohesively failed specimens collapse to a single master curve, as do the adhesively failed specimens.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10443-024-10251-y</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0929-189X
ispartof Applied composite materials, 2024-10, Vol.31 (5), p.1547-1570
issn 0929-189X
1573-4897
language eng
recordid cdi_proquest_journals_3107314092
source Springer Nature - Complete Springer Journals
subjects Adhesive bonding
Adhesive joints
Adhesive strength
Bond strength
Bonded joints
Bonding strength
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Cohesion
Composite structures
Epoxy adhesives
Failure
Fiber composites
Glass fiber reinforced plastics
Glass-epoxy composites
Industrial Chemistry/Chemical Engineering
Lap joints
Manufacturing
Materials Science
Plant layout
Polymer Sciences
Shear stress
Thickness
Turbine blades
Wind turbines
title Empirical Characterization and Modeling of Cohesive – to – Adhesive Shear Fracture Mode Transition due to Increased Adhesive Layer Thicknesses of Fiber Reinforced Composite Single – Lap Joints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20Characterization%20and%20Modeling%20of%20Cohesive%20%E2%80%93%20to%20%E2%80%93%20Adhesive%20Shear%20Fracture%20Mode%20Transition%20due%20to%20Increased%20Adhesive%20Layer%20Thicknesses%20of%20Fiber%20Reinforced%20Composite%20Single%20%E2%80%93%20Lap%20Joints&rft.jtitle=Applied%20composite%20materials&rft.au=Caltagirone,%20Peter%20E.&rft.date=2024-10-01&rft.volume=31&rft.issue=5&rft.spage=1547&rft.epage=1570&rft.pages=1547-1570&rft.issn=0929-189X&rft.eissn=1573-4897&rft_id=info:doi/10.1007/s10443-024-10251-y&rft_dat=%3Cproquest_cross%3E3107314092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107314092&rft_id=info:pmid/&rfr_iscdi=true