Empirical Characterization and Modeling of Cohesive – to – Adhesive Shear Fracture Mode Transition due to Increased Adhesive Layer Thicknesses of Fiber Reinforced Composite Single – Lap Joints
To ensure a strong adhesive bond, most standards and adhesive manufacturers specify a maximum adhesive gap of 1 mm when bonding fiber reinforced composite structures. In manufacturing large components, such as joining two halves of wind turbine blades, meeting this gap tolerance specification is imp...
Gespeichert in:
Veröffentlicht in: | Applied composite materials 2024-10, Vol.31 (5), p.1547-1570 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1570 |
---|---|
container_issue | 5 |
container_start_page | 1547 |
container_title | Applied composite materials |
container_volume | 31 |
creator | Caltagirone, Peter E. Cousins, Dylan S. Swan, Dana Snowberg, David Berger, John R. Stebner, Aaron P. |
description | To ensure a strong adhesive bond, most standards and adhesive manufacturers specify a maximum adhesive gap of 1 mm when bonding fiber reinforced composite structures. In manufacturing large components, such as joining two halves of wind turbine blades, meeting this gap tolerance specification is impractical; gaps larger than 10 mm are common in large adhesively bonded composite structures using state-of-the-art manufacturing techniques. Currently, there is a lack of fundamental understanding of the failure mechanics of adhesive gaps larger than 3 mm. To create such understanding, glass fiber – acrylic thermoplastic composite panels bonded using different epoxy adhesives within single-lap joint samples with adhesive thicknesses of 0.1 mm, 0.3 mm, 1 mm, 3 mm, 5 mm, and 10 mm were sheared to failure. A transition from cohesive to adhesive failure was observed to occur about 1 mm to 3 mm joint thicknesses. Plotting the shear stress normalized by the ratio of the joint width to thickness as a function of the joint thickness normalized by the joint length is shown to result in the ability to fit simple empirically derived models of the cohesive-to-adhesive failure transition, regardless of the adhesive. Furthermore, using these normalized variables, all the observed cohesively failed specimens collapse to a single master curve, as do the adhesively failed specimens. |
doi_str_mv | 10.1007/s10443-024-10251-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3107314092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107314092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-bb436936ca66acf03121a4cc141a83d59f161c8495d42676a63830c29250aad33</originalsourceid><addsrcrecordid>eNp9kc1qGzEUhUVoIW7aF8hK0PU0-hvNzDIMcZvgUmhd6E5ca-7ESmxpKo0LzirvkHfKg_RJKnsC2XV14XK-cy73EHLO2SfOWHWROFNKFkyogjNR8mJ_Qma8rGSh6qZ6Q2asEU3B6-bXKXmX0h1jrK50NSPPV9vBRWdhQ9s1RLAjRvcAowuegu_o19DhxvlbGnrahjUm9wfp38cnOobjuOxedj_WCJHODw67iEeOLiP45I5e3Q4PyLW3ESFh9wouYI-RLtfO3ntMCdMhau5Wefkdne9DtFnehu0QslcOytdsphsWMNCb4PyY3pO3PWwSfniZZ-Tn_GrZfikW3z5ft5eLwgrGxmK1UlI3UlvQGmzPJBcclLVccahlVzY919zWqik7JXSlQctaMisaUTKATsoz8nHyHWL4vcM0mruwiz5HGslZJbnKj84qMalsDClF7M0Q3Rbi3nBmDn2ZqS-T-zLHvsw-Q3KCUhb7W4yv1v-h_gFoOJ3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107314092</pqid></control><display><type>article</type><title>Empirical Characterization and Modeling of Cohesive – to – Adhesive Shear Fracture Mode Transition due to Increased Adhesive Layer Thicknesses of Fiber Reinforced Composite Single – Lap Joints</title><source>Springer Nature - Complete Springer Journals</source><creator>Caltagirone, Peter E. ; Cousins, Dylan S. ; Swan, Dana ; Snowberg, David ; Berger, John R. ; Stebner, Aaron P.</creator><creatorcontrib>Caltagirone, Peter E. ; Cousins, Dylan S. ; Swan, Dana ; Snowberg, David ; Berger, John R. ; Stebner, Aaron P.</creatorcontrib><description>To ensure a strong adhesive bond, most standards and adhesive manufacturers specify a maximum adhesive gap of 1 mm when bonding fiber reinforced composite structures. In manufacturing large components, such as joining two halves of wind turbine blades, meeting this gap tolerance specification is impractical; gaps larger than 10 mm are common in large adhesively bonded composite structures using state-of-the-art manufacturing techniques. Currently, there is a lack of fundamental understanding of the failure mechanics of adhesive gaps larger than 3 mm. To create such understanding, glass fiber – acrylic thermoplastic composite panels bonded using different epoxy adhesives within single-lap joint samples with adhesive thicknesses of 0.1 mm, 0.3 mm, 1 mm, 3 mm, 5 mm, and 10 mm were sheared to failure. A transition from cohesive to adhesive failure was observed to occur about 1 mm to 3 mm joint thicknesses. Plotting the shear stress normalized by the ratio of the joint width to thickness as a function of the joint thickness normalized by the joint length is shown to result in the ability to fit simple empirically derived models of the cohesive-to-adhesive failure transition, regardless of the adhesive. Furthermore, using these normalized variables, all the observed cohesively failed specimens collapse to a single master curve, as do the adhesively failed specimens.</description><identifier>ISSN: 0929-189X</identifier><identifier>EISSN: 1573-4897</identifier><identifier>DOI: 10.1007/s10443-024-10251-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adhesive bonding ; Adhesive joints ; Adhesive strength ; Bond strength ; Bonded joints ; Bonding strength ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Cohesion ; Composite structures ; Epoxy adhesives ; Failure ; Fiber composites ; Glass fiber reinforced plastics ; Glass-epoxy composites ; Industrial Chemistry/Chemical Engineering ; Lap joints ; Manufacturing ; Materials Science ; Plant layout ; Polymer Sciences ; Shear stress ; Thickness ; Turbine blades ; Wind turbines</subject><ispartof>Applied composite materials, 2024-10, Vol.31 (5), p.1547-1570</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-bb436936ca66acf03121a4cc141a83d59f161c8495d42676a63830c29250aad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10443-024-10251-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10443-024-10251-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Caltagirone, Peter E.</creatorcontrib><creatorcontrib>Cousins, Dylan S.</creatorcontrib><creatorcontrib>Swan, Dana</creatorcontrib><creatorcontrib>Snowberg, David</creatorcontrib><creatorcontrib>Berger, John R.</creatorcontrib><creatorcontrib>Stebner, Aaron P.</creatorcontrib><title>Empirical Characterization and Modeling of Cohesive – to – Adhesive Shear Fracture Mode Transition due to Increased Adhesive Layer Thicknesses of Fiber Reinforced Composite Single – Lap Joints</title><title>Applied composite materials</title><addtitle>Appl Compos Mater</addtitle><description>To ensure a strong adhesive bond, most standards and adhesive manufacturers specify a maximum adhesive gap of 1 mm when bonding fiber reinforced composite structures. In manufacturing large components, such as joining two halves of wind turbine blades, meeting this gap tolerance specification is impractical; gaps larger than 10 mm are common in large adhesively bonded composite structures using state-of-the-art manufacturing techniques. Currently, there is a lack of fundamental understanding of the failure mechanics of adhesive gaps larger than 3 mm. To create such understanding, glass fiber – acrylic thermoplastic composite panels bonded using different epoxy adhesives within single-lap joint samples with adhesive thicknesses of 0.1 mm, 0.3 mm, 1 mm, 3 mm, 5 mm, and 10 mm were sheared to failure. A transition from cohesive to adhesive failure was observed to occur about 1 mm to 3 mm joint thicknesses. Plotting the shear stress normalized by the ratio of the joint width to thickness as a function of the joint thickness normalized by the joint length is shown to result in the ability to fit simple empirically derived models of the cohesive-to-adhesive failure transition, regardless of the adhesive. Furthermore, using these normalized variables, all the observed cohesively failed specimens collapse to a single master curve, as do the adhesively failed specimens.</description><subject>Adhesive bonding</subject><subject>Adhesive joints</subject><subject>Adhesive strength</subject><subject>Bond strength</subject><subject>Bonded joints</subject><subject>Bonding strength</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cohesion</subject><subject>Composite structures</subject><subject>Epoxy adhesives</subject><subject>Failure</subject><subject>Fiber composites</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass-epoxy composites</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Lap joints</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Plant layout</subject><subject>Polymer Sciences</subject><subject>Shear stress</subject><subject>Thickness</subject><subject>Turbine blades</subject><subject>Wind turbines</subject><issn>0929-189X</issn><issn>1573-4897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1qGzEUhUVoIW7aF8hK0PU0-hvNzDIMcZvgUmhd6E5ca-7ESmxpKo0LzirvkHfKg_RJKnsC2XV14XK-cy73EHLO2SfOWHWROFNKFkyogjNR8mJ_Qma8rGSh6qZ6Q2asEU3B6-bXKXmX0h1jrK50NSPPV9vBRWdhQ9s1RLAjRvcAowuegu_o19DhxvlbGnrahjUm9wfp38cnOobjuOxedj_WCJHODw67iEeOLiP45I5e3Q4PyLW3ESFh9wouYI-RLtfO3ntMCdMhau5Wefkdne9DtFnehu0QslcOytdsphsWMNCb4PyY3pO3PWwSfniZZ-Tn_GrZfikW3z5ft5eLwgrGxmK1UlI3UlvQGmzPJBcclLVccahlVzY919zWqik7JXSlQctaMisaUTKATsoz8nHyHWL4vcM0mruwiz5HGslZJbnKj84qMalsDClF7M0Q3Rbi3nBmDn2ZqS-T-zLHvsw-Q3KCUhb7W4yv1v-h_gFoOJ3Y</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Caltagirone, Peter E.</creator><creator>Cousins, Dylan S.</creator><creator>Swan, Dana</creator><creator>Snowberg, David</creator><creator>Berger, John R.</creator><creator>Stebner, Aaron P.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20241001</creationdate><title>Empirical Characterization and Modeling of Cohesive – to – Adhesive Shear Fracture Mode Transition due to Increased Adhesive Layer Thicknesses of Fiber Reinforced Composite Single – Lap Joints</title><author>Caltagirone, Peter E. ; Cousins, Dylan S. ; Swan, Dana ; Snowberg, David ; Berger, John R. ; Stebner, Aaron P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-bb436936ca66acf03121a4cc141a83d59f161c8495d42676a63830c29250aad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesive bonding</topic><topic>Adhesive joints</topic><topic>Adhesive strength</topic><topic>Bond strength</topic><topic>Bonded joints</topic><topic>Bonding strength</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cohesion</topic><topic>Composite structures</topic><topic>Epoxy adhesives</topic><topic>Failure</topic><topic>Fiber composites</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass-epoxy composites</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Lap joints</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Plant layout</topic><topic>Polymer Sciences</topic><topic>Shear stress</topic><topic>Thickness</topic><topic>Turbine blades</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caltagirone, Peter E.</creatorcontrib><creatorcontrib>Cousins, Dylan S.</creatorcontrib><creatorcontrib>Swan, Dana</creatorcontrib><creatorcontrib>Snowberg, David</creatorcontrib><creatorcontrib>Berger, John R.</creatorcontrib><creatorcontrib>Stebner, Aaron P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Applied composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caltagirone, Peter E.</au><au>Cousins, Dylan S.</au><au>Swan, Dana</au><au>Snowberg, David</au><au>Berger, John R.</au><au>Stebner, Aaron P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical Characterization and Modeling of Cohesive – to – Adhesive Shear Fracture Mode Transition due to Increased Adhesive Layer Thicknesses of Fiber Reinforced Composite Single – Lap Joints</atitle><jtitle>Applied composite materials</jtitle><stitle>Appl Compos Mater</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>31</volume><issue>5</issue><spage>1547</spage><epage>1570</epage><pages>1547-1570</pages><issn>0929-189X</issn><eissn>1573-4897</eissn><abstract>To ensure a strong adhesive bond, most standards and adhesive manufacturers specify a maximum adhesive gap of 1 mm when bonding fiber reinforced composite structures. In manufacturing large components, such as joining two halves of wind turbine blades, meeting this gap tolerance specification is impractical; gaps larger than 10 mm are common in large adhesively bonded composite structures using state-of-the-art manufacturing techniques. Currently, there is a lack of fundamental understanding of the failure mechanics of adhesive gaps larger than 3 mm. To create such understanding, glass fiber – acrylic thermoplastic composite panels bonded using different epoxy adhesives within single-lap joint samples with adhesive thicknesses of 0.1 mm, 0.3 mm, 1 mm, 3 mm, 5 mm, and 10 mm were sheared to failure. A transition from cohesive to adhesive failure was observed to occur about 1 mm to 3 mm joint thicknesses. Plotting the shear stress normalized by the ratio of the joint width to thickness as a function of the joint thickness normalized by the joint length is shown to result in the ability to fit simple empirically derived models of the cohesive-to-adhesive failure transition, regardless of the adhesive. Furthermore, using these normalized variables, all the observed cohesively failed specimens collapse to a single master curve, as do the adhesively failed specimens.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10443-024-10251-y</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-189X |
ispartof | Applied composite materials, 2024-10, Vol.31 (5), p.1547-1570 |
issn | 0929-189X 1573-4897 |
language | eng |
recordid | cdi_proquest_journals_3107314092 |
source | Springer Nature - Complete Springer Journals |
subjects | Adhesive bonding Adhesive joints Adhesive strength Bond strength Bonded joints Bonding strength Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Cohesion Composite structures Epoxy adhesives Failure Fiber composites Glass fiber reinforced plastics Glass-epoxy composites Industrial Chemistry/Chemical Engineering Lap joints Manufacturing Materials Science Plant layout Polymer Sciences Shear stress Thickness Turbine blades Wind turbines |
title | Empirical Characterization and Modeling of Cohesive – to – Adhesive Shear Fracture Mode Transition due to Increased Adhesive Layer Thicknesses of Fiber Reinforced Composite Single – Lap Joints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20Characterization%20and%20Modeling%20of%20Cohesive%20%E2%80%93%20to%20%E2%80%93%20Adhesive%20Shear%20Fracture%20Mode%20Transition%20due%20to%20Increased%20Adhesive%20Layer%20Thicknesses%20of%20Fiber%20Reinforced%20Composite%20Single%20%E2%80%93%20Lap%20Joints&rft.jtitle=Applied%20composite%20materials&rft.au=Caltagirone,%20Peter%20E.&rft.date=2024-10-01&rft.volume=31&rft.issue=5&rft.spage=1547&rft.epage=1570&rft.pages=1547-1570&rft.issn=0929-189X&rft.eissn=1573-4897&rft_id=info:doi/10.1007/s10443-024-10251-y&rft_dat=%3Cproquest_cross%3E3107314092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107314092&rft_id=info:pmid/&rfr_iscdi=true |