Domain-stratified Training for Cross-organ and Cross-scanner Adenocarcinoma Segmentation in the COSAS 2024 Challenge

This manuscript presents an image segmentation algorithm developed for the Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation (COSAS 2024) challenge. We adopted an organ-stratified and scanner-stratified approach to train multiple Upernet-based segmentation models and subsequently ensembled t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Huang, Jiayan, Zheng, Ji, Kuang Jinbo, Xu Shuoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Huang, Jiayan
Zheng, Ji
Kuang Jinbo
Xu Shuoyu
description This manuscript presents an image segmentation algorithm developed for the Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation (COSAS 2024) challenge. We adopted an organ-stratified and scanner-stratified approach to train multiple Upernet-based segmentation models and subsequently ensembled the results. Despite the challenges posed by the varying tumor characteristics across different organs and the differing imaging conditions of various scanners, our method achieved a final test score of 0.7643 for Task 1 and 0.8354 for Task 2. These results demonstrate the adaptability and efficacy of our approach across diverse conditions. Our model's ability to generalize across various datasets underscores its potential for real-world applications.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3107310001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107310001</sourcerecordid><originalsourceid>FETCH-proquest_journals_31073100013</originalsourceid><addsrcrecordid>eNqNjE0KwjAQhYMgWNQ7DLgupEmrbktV3Llo9xLaaY20E52k9zeLHsDF4_F--FYiUVpn6TlXaiP23r-llOp4UkWhExEubjKWUh_YBNtb7KDhWFgaoHcMFTvvU8eDITDULdm3hggZyg7JtYZbSxEDNQ4TUoggR2AJwguhetRlDUqqHKqXGUekAXdi3ZvR437xrTjcrk11Tz_svjP68Hy7mSlOT53JU5SUmf7v9QOmfkrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107310001</pqid></control><display><type>article</type><title>Domain-stratified Training for Cross-organ and Cross-scanner Adenocarcinoma Segmentation in the COSAS 2024 Challenge</title><source>Free E- Journals</source><creator>Huang, Jiayan ; Zheng, Ji ; Kuang Jinbo ; Xu Shuoyu</creator><creatorcontrib>Huang, Jiayan ; Zheng, Ji ; Kuang Jinbo ; Xu Shuoyu</creatorcontrib><description>This manuscript presents an image segmentation algorithm developed for the Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation (COSAS 2024) challenge. We adopted an organ-stratified and scanner-stratified approach to train multiple Upernet-based segmentation models and subsequently ensembled the results. Despite the challenges posed by the varying tumor characteristics across different organs and the differing imaging conditions of various scanners, our method achieved a final test score of 0.7643 for Task 1 and 0.8354 for Task 2. These results demonstrate the adaptability and efficacy of our approach across diverse conditions. Our model's ability to generalize across various datasets underscores its potential for real-world applications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Image segmentation ; Scanners</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Huang, Jiayan</creatorcontrib><creatorcontrib>Zheng, Ji</creatorcontrib><creatorcontrib>Kuang Jinbo</creatorcontrib><creatorcontrib>Xu Shuoyu</creatorcontrib><title>Domain-stratified Training for Cross-organ and Cross-scanner Adenocarcinoma Segmentation in the COSAS 2024 Challenge</title><title>arXiv.org</title><description>This manuscript presents an image segmentation algorithm developed for the Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation (COSAS 2024) challenge. We adopted an organ-stratified and scanner-stratified approach to train multiple Upernet-based segmentation models and subsequently ensembled the results. Despite the challenges posed by the varying tumor characteristics across different organs and the differing imaging conditions of various scanners, our method achieved a final test score of 0.7643 for Task 1 and 0.8354 for Task 2. These results demonstrate the adaptability and efficacy of our approach across diverse conditions. Our model's ability to generalize across various datasets underscores its potential for real-world applications.</description><subject>Algorithms</subject><subject>Image segmentation</subject><subject>Scanners</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjE0KwjAQhYMgWNQ7DLgupEmrbktV3Llo9xLaaY20E52k9zeLHsDF4_F--FYiUVpn6TlXaiP23r-llOp4UkWhExEubjKWUh_YBNtb7KDhWFgaoHcMFTvvU8eDITDULdm3hggZyg7JtYZbSxEDNQ4TUoggR2AJwguhetRlDUqqHKqXGUekAXdi3ZvR437xrTjcrk11Tz_svjP68Hy7mSlOT53JU5SUmf7v9QOmfkrQ</recordid><startdate>20240919</startdate><enddate>20240919</enddate><creator>Huang, Jiayan</creator><creator>Zheng, Ji</creator><creator>Kuang Jinbo</creator><creator>Xu Shuoyu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240919</creationdate><title>Domain-stratified Training for Cross-organ and Cross-scanner Adenocarcinoma Segmentation in the COSAS 2024 Challenge</title><author>Huang, Jiayan ; Zheng, Ji ; Kuang Jinbo ; Xu Shuoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31073100013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Image segmentation</topic><topic>Scanners</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jiayan</creatorcontrib><creatorcontrib>Zheng, Ji</creatorcontrib><creatorcontrib>Kuang Jinbo</creatorcontrib><creatorcontrib>Xu Shuoyu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jiayan</au><au>Zheng, Ji</au><au>Kuang Jinbo</au><au>Xu Shuoyu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Domain-stratified Training for Cross-organ and Cross-scanner Adenocarcinoma Segmentation in the COSAS 2024 Challenge</atitle><jtitle>arXiv.org</jtitle><date>2024-09-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This manuscript presents an image segmentation algorithm developed for the Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation (COSAS 2024) challenge. We adopted an organ-stratified and scanner-stratified approach to train multiple Upernet-based segmentation models and subsequently ensembled the results. Despite the challenges posed by the varying tumor characteristics across different organs and the differing imaging conditions of various scanners, our method achieved a final test score of 0.7643 for Task 1 and 0.8354 for Task 2. These results demonstrate the adaptability and efficacy of our approach across diverse conditions. Our model's ability to generalize across various datasets underscores its potential for real-world applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3107310001
source Free E- Journals
subjects Algorithms
Image segmentation
Scanners
title Domain-stratified Training for Cross-organ and Cross-scanner Adenocarcinoma Segmentation in the COSAS 2024 Challenge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Domain-stratified%20Training%20for%20Cross-organ%20and%20Cross-scanner%20Adenocarcinoma%20Segmentation%20in%20the%20COSAS%202024%20Challenge&rft.jtitle=arXiv.org&rft.au=Huang,%20Jiayan&rft.date=2024-09-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3107310001%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107310001&rft_id=info:pmid/&rfr_iscdi=true