Incremental and Data-Efficient Concept Formation to Support Masked Word Prediction
This paper introduces Cobweb4L, a novel approach for efficient language model learning that supports masked word prediction. The approach builds on Cobweb, an incremental system that learns a hierarchy of probabilistic concepts. Each concept stores the frequencies of words that appear in instances t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lian, Xin Baglodi, Nishant MacLellan, Christopher J |
description | This paper introduces Cobweb4L, a novel approach for efficient language model learning that supports masked word prediction. The approach builds on Cobweb, an incremental system that learns a hierarchy of probabilistic concepts. Each concept stores the frequencies of words that appear in instances tagged with that concept label. The system utilizes an attribute value representation to encode words and their surrounding context into instances. Cobweb4L uses the information theoretic variant of category utility and a new performance mechanism that leverages multiple concepts to generate predictions. We demonstrate that with these extensions it significantly outperforms prior Cobweb performance mechanisms that use only a single node to generate predictions. Further, we demonstrate that Cobweb4L learns rapidly and achieves performance comparable to and even superior to Word2Vec. Next, we show that Cobweb4L and Word2Vec outperform BERT in the same task with less training data. Finally, we discuss future work to make our conclusions more robust and inclusive. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3107309909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107309909</sourcerecordid><originalsourceid>FETCH-proquest_journals_31073099093</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_XOhZmFtmPptSD0FU0KMMN2Gmu2ub_59BH9DTgXPOgkSM8zQ57Bhbkdj7nlLK9jnLMh6R29m0To3KBDGAMBKOIoik6jrd6llCiaZVNkCNbhRBo4GAcJ-sRRfgIvxLSXiik3B1Sur2e2zIshODV_GPa7Ktq0d5SqzD96R8aHqcnJlTw1Oac1oUtOD_XR_L4z9_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107309909</pqid></control><display><type>article</type><title>Incremental and Data-Efficient Concept Formation to Support Masked Word Prediction</title><source>Free E- Journals</source><creator>Lian, Xin ; Baglodi, Nishant ; MacLellan, Christopher J</creator><creatorcontrib>Lian, Xin ; Baglodi, Nishant ; MacLellan, Christopher J</creatorcontrib><description>This paper introduces Cobweb4L, a novel approach for efficient language model learning that supports masked word prediction. The approach builds on Cobweb, an incremental system that learns a hierarchy of probabilistic concepts. Each concept stores the frequencies of words that appear in instances tagged with that concept label. The system utilizes an attribute value representation to encode words and their surrounding context into instances. Cobweb4L uses the information theoretic variant of category utility and a new performance mechanism that leverages multiple concepts to generate predictions. We demonstrate that with these extensions it significantly outperforms prior Cobweb performance mechanisms that use only a single node to generate predictions. Further, we demonstrate that Cobweb4L learns rapidly and achieves performance comparable to and even superior to Word2Vec. Next, we show that Cobweb4L and Word2Vec outperform BERT in the same task with less training data. Finally, we discuss future work to make our conclusions more robust and inclusive.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Information theory ; Performance prediction</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Lian, Xin</creatorcontrib><creatorcontrib>Baglodi, Nishant</creatorcontrib><creatorcontrib>MacLellan, Christopher J</creatorcontrib><title>Incremental and Data-Efficient Concept Formation to Support Masked Word Prediction</title><title>arXiv.org</title><description>This paper introduces Cobweb4L, a novel approach for efficient language model learning that supports masked word prediction. The approach builds on Cobweb, an incremental system that learns a hierarchy of probabilistic concepts. Each concept stores the frequencies of words that appear in instances tagged with that concept label. The system utilizes an attribute value representation to encode words and their surrounding context into instances. Cobweb4L uses the information theoretic variant of category utility and a new performance mechanism that leverages multiple concepts to generate predictions. We demonstrate that with these extensions it significantly outperforms prior Cobweb performance mechanisms that use only a single node to generate predictions. Further, we demonstrate that Cobweb4L learns rapidly and achieves performance comparable to and even superior to Word2Vec. Next, we show that Cobweb4L and Word2Vec outperform BERT in the same task with less training data. Finally, we discuss future work to make our conclusions more robust and inclusive.</description><subject>Information theory</subject><subject>Performance prediction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNitEKgjAUQEcQJOU_XOhZmFtmPptSD0FU0KMMN2Gmu2ub_59BH9DTgXPOgkSM8zQ57Bhbkdj7nlLK9jnLMh6R29m0To3KBDGAMBKOIoik6jrd6llCiaZVNkCNbhRBo4GAcJ-sRRfgIvxLSXiik3B1Sur2e2zIshODV_GPa7Ktq0d5SqzD96R8aHqcnJlTw1Oac1oUtOD_XR_L4z9_</recordid><startdate>20240919</startdate><enddate>20240919</enddate><creator>Lian, Xin</creator><creator>Baglodi, Nishant</creator><creator>MacLellan, Christopher J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240919</creationdate><title>Incremental and Data-Efficient Concept Formation to Support Masked Word Prediction</title><author>Lian, Xin ; Baglodi, Nishant ; MacLellan, Christopher J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31073099093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Information theory</topic><topic>Performance prediction</topic><toplevel>online_resources</toplevel><creatorcontrib>Lian, Xin</creatorcontrib><creatorcontrib>Baglodi, Nishant</creatorcontrib><creatorcontrib>MacLellan, Christopher J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lian, Xin</au><au>Baglodi, Nishant</au><au>MacLellan, Christopher J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Incremental and Data-Efficient Concept Formation to Support Masked Word Prediction</atitle><jtitle>arXiv.org</jtitle><date>2024-09-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper introduces Cobweb4L, a novel approach for efficient language model learning that supports masked word prediction. The approach builds on Cobweb, an incremental system that learns a hierarchy of probabilistic concepts. Each concept stores the frequencies of words that appear in instances tagged with that concept label. The system utilizes an attribute value representation to encode words and their surrounding context into instances. Cobweb4L uses the information theoretic variant of category utility and a new performance mechanism that leverages multiple concepts to generate predictions. We demonstrate that with these extensions it significantly outperforms prior Cobweb performance mechanisms that use only a single node to generate predictions. Further, we demonstrate that Cobweb4L learns rapidly and achieves performance comparable to and even superior to Word2Vec. Next, we show that Cobweb4L and Word2Vec outperform BERT in the same task with less training data. Finally, we discuss future work to make our conclusions more robust and inclusive.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3107309909 |
source | Free E- Journals |
subjects | Information theory Performance prediction |
title | Incremental and Data-Efficient Concept Formation to Support Masked Word Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Incremental%20and%20Data-Efficient%20Concept%20Formation%20to%20Support%20Masked%20Word%20Prediction&rft.jtitle=arXiv.org&rft.au=Lian,%20Xin&rft.date=2024-09-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3107309909%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107309909&rft_id=info:pmid/&rfr_iscdi=true |