Generalized space time autoregressive integrated autoregressive conditional heteroscedastic (GSTARI-ARCH) modeling with least squares and MLE parameter estimation

Space time or spatial time series data is time series data that is not only related to events at previous times, but also has a relationship to location. Generalized space time autoregressive integrated-autoregressive conditional heteroscedastic is a model used to analyze spatial time series data wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aida, Liza Nur, Rahardjo, Swasono, Kusumasari, Vita
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3235
creator Aida, Liza Nur
Rahardjo, Swasono
Kusumasari, Vita
description Space time or spatial time series data is time series data that is not only related to events at previous times, but also has a relationship to location. Generalized space time autoregressive integrated-autoregressive conditional heteroscedastic is a model used to analyze spatial time series data where this model considers the differentiation process. According to the law of probability, the process does not change over time, so if the data is not stationary, it can make the estimation results less precise, so a differentiation (integrated) process is needed. In reality, it is often found that the variance changes over time or is heteroscedastic. Autoregressive conditional heteroscedastic analyzes the error variance problem differently for each time series observation. In this condition, the variance error not only functions from the independent variable, but also depends on how big the previous error was. The aim of this research is to model Covid-19 cases with the GSTARI-ARCH model which is compared with the GSTARI model by estimating model parameters using two methods. Parameter estimation using the least squares method produces the linear form β^(i)=(Xi’Xi)−1Xi’Xi. The error in the autoregressive conditional heteroscedastic model is estimated using the maximum likelihood method assuming constant correlation, so that Σ = Dt RDt is obtained. The modeling results show that the MAPE value of GSTARI-ARCH is smaller than GSTARI, so the GSTARI-ARCH model is the best model.
doi_str_mv 10.1063/5.0235733
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3107288712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107288712</sourcerecordid><originalsourceid>FETCH-LOGICAL-p633-ec3be373be381268e4b0abb26f4d492c6bcc11261b79811b27c62dcbef36c5993</originalsourceid><addsrcrecordid>eNpdkc9Kw0AQxhdRsFYPvsGCFxVS90-ymxxLqW2hItQevIXNZtpuSZN0d6Po4_ikbm1PXmYYvo_fzPAhdEvJgBLBn5IBYTyRnJ-hHk0SGklBxTnqEZLFEYv5-yW6cm5LCMukTHvoZwI1WFWZbyixa5UG7M0OsOp8Y2FtwTnzAdjUPgzKB9M_RTd1abxpalXhDXiwjdNQKueNxveTt-VwMYuGi9H0Ae-aEipTr_Gn8RtcQfBgt-9UIGFVl_hlPsatsmp3oGAIhJ06gK_RxUpVDm5OvY-Wz-PlaBrNXyez0XAetYLzCDQvgMtDSSkTKcQFUUXBxCou44xpUWhNg0ALmaWUFkxqwUpdwIoLnWQZ76O7I7a1zb4L6_Nt09nwlss5JZKlqaQsuB6PLqeN_zsvb2041H7llOSHCPIkP0XAfwEJL3wZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3107288712</pqid></control><display><type>conference_proceeding</type><title>Generalized space time autoregressive integrated autoregressive conditional heteroscedastic (GSTARI-ARCH) modeling with least squares and MLE parameter estimation</title><source>AIP Journals Complete</source><creator>Aida, Liza Nur ; Rahardjo, Swasono ; Kusumasari, Vita</creator><contributor>Rahmadani, Desi ; Utami, Anita Dewi ; Aeli, Lita Wulandari ; Solikhin, Mukhammad ; Suwarman, Ramdhan Fazrianto ; Rofiki, Imam ; Pahrany, Andi Daniah</contributor><creatorcontrib>Aida, Liza Nur ; Rahardjo, Swasono ; Kusumasari, Vita ; Rahmadani, Desi ; Utami, Anita Dewi ; Aeli, Lita Wulandari ; Solikhin, Mukhammad ; Suwarman, Ramdhan Fazrianto ; Rofiki, Imam ; Pahrany, Andi Daniah</creatorcontrib><description>Space time or spatial time series data is time series data that is not only related to events at previous times, but also has a relationship to location. Generalized space time autoregressive integrated-autoregressive conditional heteroscedastic is a model used to analyze spatial time series data where this model considers the differentiation process. According to the law of probability, the process does not change over time, so if the data is not stationary, it can make the estimation results less precise, so a differentiation (integrated) process is needed. In reality, it is often found that the variance changes over time or is heteroscedastic. Autoregressive conditional heteroscedastic analyzes the error variance problem differently for each time series observation. In this condition, the variance error not only functions from the independent variable, but also depends on how big the previous error was. The aim of this research is to model Covid-19 cases with the GSTARI-ARCH model which is compared with the GSTARI model by estimating model parameters using two methods. Parameter estimation using the least squares method produces the linear form β^(i)=(Xi’Xi)−1Xi’Xi. The error in the autoregressive conditional heteroscedastic model is estimated using the maximum likelihood method assuming constant correlation, so that Σ = Dt RDt is obtained. The modeling results show that the MAPE value of GSTARI-ARCH is smaller than GSTARI, so the GSTARI-ARCH model is the best model.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0235733</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Autoregressive processes ; Data analysis ; Differentiation ; Error analysis ; Independent variables ; Least squares method ; Maximum likelihood estimates ; Maximum likelihood method ; Modelling ; Parameter estimation ; Spatial data ; Time series ; Variance</subject><ispartof>AIP conference proceedings, 2024, Vol.3235 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0235733$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23917,23918,25127,27911,27912,76139</link.rule.ids></links><search><contributor>Rahmadani, Desi</contributor><contributor>Utami, Anita Dewi</contributor><contributor>Aeli, Lita Wulandari</contributor><contributor>Solikhin, Mukhammad</contributor><contributor>Suwarman, Ramdhan Fazrianto</contributor><contributor>Rofiki, Imam</contributor><contributor>Pahrany, Andi Daniah</contributor><creatorcontrib>Aida, Liza Nur</creatorcontrib><creatorcontrib>Rahardjo, Swasono</creatorcontrib><creatorcontrib>Kusumasari, Vita</creatorcontrib><title>Generalized space time autoregressive integrated autoregressive conditional heteroscedastic (GSTARI-ARCH) modeling with least squares and MLE parameter estimation</title><title>AIP conference proceedings</title><description>Space time or spatial time series data is time series data that is not only related to events at previous times, but also has a relationship to location. Generalized space time autoregressive integrated-autoregressive conditional heteroscedastic is a model used to analyze spatial time series data where this model considers the differentiation process. According to the law of probability, the process does not change over time, so if the data is not stationary, it can make the estimation results less precise, so a differentiation (integrated) process is needed. In reality, it is often found that the variance changes over time or is heteroscedastic. Autoregressive conditional heteroscedastic analyzes the error variance problem differently for each time series observation. In this condition, the variance error not only functions from the independent variable, but also depends on how big the previous error was. The aim of this research is to model Covid-19 cases with the GSTARI-ARCH model which is compared with the GSTARI model by estimating model parameters using two methods. Parameter estimation using the least squares method produces the linear form β^(i)=(Xi’Xi)−1Xi’Xi. The error in the autoregressive conditional heteroscedastic model is estimated using the maximum likelihood method assuming constant correlation, so that Σ = Dt RDt is obtained. The modeling results show that the MAPE value of GSTARI-ARCH is smaller than GSTARI, so the GSTARI-ARCH model is the best model.</description><subject>Autoregressive processes</subject><subject>Data analysis</subject><subject>Differentiation</subject><subject>Error analysis</subject><subject>Independent variables</subject><subject>Least squares method</subject><subject>Maximum likelihood estimates</subject><subject>Maximum likelihood method</subject><subject>Modelling</subject><subject>Parameter estimation</subject><subject>Spatial data</subject><subject>Time series</subject><subject>Variance</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpdkc9Kw0AQxhdRsFYPvsGCFxVS90-ymxxLqW2hItQevIXNZtpuSZN0d6Po4_ikbm1PXmYYvo_fzPAhdEvJgBLBn5IBYTyRnJ-hHk0SGklBxTnqEZLFEYv5-yW6cm5LCMukTHvoZwI1WFWZbyixa5UG7M0OsOp8Y2FtwTnzAdjUPgzKB9M_RTd1abxpalXhDXiwjdNQKueNxveTt-VwMYuGi9H0Ae-aEipTr_Gn8RtcQfBgt-9UIGFVl_hlPsatsmp3oGAIhJ06gK_RxUpVDm5OvY-Wz-PlaBrNXyez0XAetYLzCDQvgMtDSSkTKcQFUUXBxCou44xpUWhNg0ALmaWUFkxqwUpdwIoLnWQZ76O7I7a1zb4L6_Nt09nwlss5JZKlqaQsuB6PLqeN_zsvb2041H7llOSHCPIkP0XAfwEJL3wZ</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Aida, Liza Nur</creator><creator>Rahardjo, Swasono</creator><creator>Kusumasari, Vita</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240920</creationdate><title>Generalized space time autoregressive integrated autoregressive conditional heteroscedastic (GSTARI-ARCH) modeling with least squares and MLE parameter estimation</title><author>Aida, Liza Nur ; Rahardjo, Swasono ; Kusumasari, Vita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p633-ec3be373be381268e4b0abb26f4d492c6bcc11261b79811b27c62dcbef36c5993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autoregressive processes</topic><topic>Data analysis</topic><topic>Differentiation</topic><topic>Error analysis</topic><topic>Independent variables</topic><topic>Least squares method</topic><topic>Maximum likelihood estimates</topic><topic>Maximum likelihood method</topic><topic>Modelling</topic><topic>Parameter estimation</topic><topic>Spatial data</topic><topic>Time series</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aida, Liza Nur</creatorcontrib><creatorcontrib>Rahardjo, Swasono</creatorcontrib><creatorcontrib>Kusumasari, Vita</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aida, Liza Nur</au><au>Rahardjo, Swasono</au><au>Kusumasari, Vita</au><au>Rahmadani, Desi</au><au>Utami, Anita Dewi</au><au>Aeli, Lita Wulandari</au><au>Solikhin, Mukhammad</au><au>Suwarman, Ramdhan Fazrianto</au><au>Rofiki, Imam</au><au>Pahrany, Andi Daniah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generalized space time autoregressive integrated autoregressive conditional heteroscedastic (GSTARI-ARCH) modeling with least squares and MLE parameter estimation</atitle><btitle>AIP conference proceedings</btitle><date>2024-09-20</date><risdate>2024</risdate><volume>3235</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Space time or spatial time series data is time series data that is not only related to events at previous times, but also has a relationship to location. Generalized space time autoregressive integrated-autoregressive conditional heteroscedastic is a model used to analyze spatial time series data where this model considers the differentiation process. According to the law of probability, the process does not change over time, so if the data is not stationary, it can make the estimation results less precise, so a differentiation (integrated) process is needed. In reality, it is often found that the variance changes over time or is heteroscedastic. Autoregressive conditional heteroscedastic analyzes the error variance problem differently for each time series observation. In this condition, the variance error not only functions from the independent variable, but also depends on how big the previous error was. The aim of this research is to model Covid-19 cases with the GSTARI-ARCH model which is compared with the GSTARI model by estimating model parameters using two methods. Parameter estimation using the least squares method produces the linear form β^(i)=(Xi’Xi)−1Xi’Xi. The error in the autoregressive conditional heteroscedastic model is estimated using the maximum likelihood method assuming constant correlation, so that Σ = Dt RDt is obtained. The modeling results show that the MAPE value of GSTARI-ARCH is smaller than GSTARI, so the GSTARI-ARCH model is the best model.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0235733</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3235 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3107288712
source AIP Journals Complete
subjects Autoregressive processes
Data analysis
Differentiation
Error analysis
Independent variables
Least squares method
Maximum likelihood estimates
Maximum likelihood method
Modelling
Parameter estimation
Spatial data
Time series
Variance
title Generalized space time autoregressive integrated autoregressive conditional heteroscedastic (GSTARI-ARCH) modeling with least squares and MLE parameter estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generalized%20space%20time%20autoregressive%20integrated%20autoregressive%20conditional%20heteroscedastic%20(GSTARI-ARCH)%20modeling%20with%20least%20squares%20and%20MLE%20parameter%20estimation&rft.btitle=AIP%20conference%20proceedings&rft.au=Aida,%20Liza%20Nur&rft.date=2024-09-20&rft.volume=3235&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0235733&rft_dat=%3Cproquest_scita%3E3107288712%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107288712&rft_id=info:pmid/&rfr_iscdi=true