Improved Parametric Representation of IM From FEM for More Accurate Torque Predictions: Simulations and Experimental Validations

In this work, an updated methodology to determine the parameters of three-phase induction machines (IMs) is developed and presented. The goal of this determination is to achieve a better model representation of induction machines for the usage of a circuit-based control system. First, the theory of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2024-09, Vol.60 (5), p.6660-6671
Hauptverfasser: Hsieh, Meng-Ju, Grunditz, Emma Arfa, Thiringer, Torbjorn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6671
container_issue 5
container_start_page 6660
container_title IEEE transactions on industry applications
container_volume 60
creator Hsieh, Meng-Ju
Grunditz, Emma Arfa
Thiringer, Torbjorn
description In this work, an updated methodology to determine the parameters of three-phase induction machines (IMs) is developed and presented. The goal of this determination is to achieve a better model representation of induction machines for the usage of a circuit-based control system. First, the theory of the T-form model (TFM) and the inverse \Gamma-form model (IGFM) are reviewed. The former review becomes the foundation of the following interpretation of the developing methods for identifying the needed parameters. Next, a 2D electromagnetic finite element method (FEM) model of a 15 kW IM is utilized to demonstrate the strength of the methodology on a real machine. Furthermore, a comparison of results using the conventional test and the newly proposed method is presented, demonstrating the strength of the proposed procedure with enhanced accuracy for the torque and slip prediction. Lastly, experimental results using a 15 kW IM are utilized to demonstrate the usefulness of the proposed parameter determination procedure.
doi_str_mv 10.1109/TIA.2024.3403806
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3107263107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10535711</ieee_id><sourcerecordid>3107263107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-5611a141abbab8881d95f3f9ab9d3ebf0d3652c3b1f4f2eb92b033197fdb46d13</originalsourceid><addsrcrecordid>eNpNUcuO1DAQjBBIDAt3Dhwscc7gjp1HcxutZmCkHbFiB66WH21tVsk42AmPG59OQlaIS_ehq6q7urLsNfAtAMd35-NuW_BCboXkouHVk2wDKDBHUdVPsw3nKHJElM-zFyk9cA6yBLnJfh_7IYbv5NitjrqnMbaWfaYhUqLLqMc2XFjw7Hhihxh6dtifmA-RnUIktrN2inokdg7x20TsNpJr7UJJ79ld20_dX35i-uLY_udAse0X0Y591V3r1uHL7JnXXaJXj_0q-3LYn68_5jefPhyvdze5FQWMeVkBaJCgjdGmaRpwWHrhURt0goznTlRlYYUBL31BBgvDhQCsvTOyciCusrtVN_2gYTJqmI_R8ZcKulWLWR3tvbL3uuspJpVIld42yLFRRBqVRGuVca5SKCx6qup5s5xV366q8xPnF6RRPYQpXmYjSgCvi2qpM4qvKBtDSpH8v-3A1ZKemtNTS3rqMb2Z8maltET0H7wUZQ0g_gBRwZih</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107263107</pqid></control><display><type>article</type><title>Improved Parametric Representation of IM From FEM for More Accurate Torque Predictions: Simulations and Experimental Validations</title><source>IEEE Electronic Library (IEL)</source><creator>Hsieh, Meng-Ju ; Grunditz, Emma Arfa ; Thiringer, Torbjorn</creator><creatorcontrib>Hsieh, Meng-Ju ; Grunditz, Emma Arfa ; Thiringer, Torbjorn</creatorcontrib><description>In this work, an updated methodology to determine the parameters of three-phase induction machines (IMs) is developed and presented. The goal of this determination is to achieve a better model representation of induction machines for the usage of a circuit-based control system. First, the theory of the T-form model (TFM) and the inverse &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\Gamma&lt;/tex-math&gt;&lt;/inline-formula&gt;-form model (IGFM) are reviewed. The former review becomes the foundation of the following interpretation of the developing methods for identifying the needed parameters. Next, a 2D electromagnetic finite element method (FEM) model of a 15 kW IM is utilized to demonstrate the strength of the methodology on a real machine. Furthermore, a comparison of results using the conventional test and the newly proposed method is presented, demonstrating the strength of the proposed procedure with enhanced accuracy for the torque and slip prediction. Lastly, experimental results using a 15 kW IM are utilized to demonstrate the usefulness of the proposed parameter determination procedure.</description><identifier>ISSN: 0093-9994</identifier><identifier>ISSN: 1939-9367</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2024.3403806</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Couplings ; Electromagnetic induction ; Equivalent circuits ; Finite element analysis ; Finite element method ; finite element method (FEM) ; Induction machine (IM) ; Induction motors ; Integrated circuit modeling ; Mathematical models ; parameter determination ; Parameter identification ; perfect field-oriented control (PFOC) ; Representations ; Rotors ; Stator windings ; Stators ; Torque</subject><ispartof>IEEE transactions on industry applications, 2024-09, Vol.60 (5), p.6660-6671</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-5611a141abbab8881d95f3f9ab9d3ebf0d3652c3b1f4f2eb92b033197fdb46d13</cites><orcidid>0000-0001-5777-1242 ; 0000-0003-2960-5751 ; 0000-0001-5344-7963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10535711$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10535711$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://research.chalmers.se/publication/541347$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsieh, Meng-Ju</creatorcontrib><creatorcontrib>Grunditz, Emma Arfa</creatorcontrib><creatorcontrib>Thiringer, Torbjorn</creatorcontrib><title>Improved Parametric Representation of IM From FEM for More Accurate Torque Predictions: Simulations and Experimental Validations</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>In this work, an updated methodology to determine the parameters of three-phase induction machines (IMs) is developed and presented. The goal of this determination is to achieve a better model representation of induction machines for the usage of a circuit-based control system. First, the theory of the T-form model (TFM) and the inverse &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\Gamma&lt;/tex-math&gt;&lt;/inline-formula&gt;-form model (IGFM) are reviewed. The former review becomes the foundation of the following interpretation of the developing methods for identifying the needed parameters. Next, a 2D electromagnetic finite element method (FEM) model of a 15 kW IM is utilized to demonstrate the strength of the methodology on a real machine. Furthermore, a comparison of results using the conventional test and the newly proposed method is presented, demonstrating the strength of the proposed procedure with enhanced accuracy for the torque and slip prediction. Lastly, experimental results using a 15 kW IM are utilized to demonstrate the usefulness of the proposed parameter determination procedure.</description><subject>Couplings</subject><subject>Electromagnetic induction</subject><subject>Equivalent circuits</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>finite element method (FEM)</subject><subject>Induction machine (IM)</subject><subject>Induction motors</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>parameter determination</subject><subject>Parameter identification</subject><subject>perfect field-oriented control (PFOC)</subject><subject>Representations</subject><subject>Rotors</subject><subject>Stator windings</subject><subject>Stators</subject><subject>Torque</subject><issn>0093-9994</issn><issn>1939-9367</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUcuO1DAQjBBIDAt3Dhwscc7gjp1HcxutZmCkHbFiB66WH21tVsk42AmPG59OQlaIS_ehq6q7urLsNfAtAMd35-NuW_BCboXkouHVk2wDKDBHUdVPsw3nKHJElM-zFyk9cA6yBLnJfh_7IYbv5NitjrqnMbaWfaYhUqLLqMc2XFjw7Hhihxh6dtifmA-RnUIktrN2inokdg7x20TsNpJr7UJJ79ld20_dX35i-uLY_udAse0X0Y591V3r1uHL7JnXXaJXj_0q-3LYn68_5jefPhyvdze5FQWMeVkBaJCgjdGmaRpwWHrhURt0goznTlRlYYUBL31BBgvDhQCsvTOyciCusrtVN_2gYTJqmI_R8ZcKulWLWR3tvbL3uuspJpVIld42yLFRRBqVRGuVca5SKCx6qup5s5xV366q8xPnF6RRPYQpXmYjSgCvi2qpM4qvKBtDSpH8v-3A1ZKemtNTS3rqMb2Z8maltET0H7wUZQ0g_gBRwZih</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Hsieh, Meng-Ju</creator><creator>Grunditz, Emma Arfa</creator><creator>Thiringer, Torbjorn</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0001-5777-1242</orcidid><orcidid>https://orcid.org/0000-0003-2960-5751</orcidid><orcidid>https://orcid.org/0000-0001-5344-7963</orcidid></search><sort><creationdate>20240901</creationdate><title>Improved Parametric Representation of IM From FEM for More Accurate Torque Predictions: Simulations and Experimental Validations</title><author>Hsieh, Meng-Ju ; Grunditz, Emma Arfa ; Thiringer, Torbjorn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-5611a141abbab8881d95f3f9ab9d3ebf0d3652c3b1f4f2eb92b033197fdb46d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Couplings</topic><topic>Electromagnetic induction</topic><topic>Equivalent circuits</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>finite element method (FEM)</topic><topic>Induction machine (IM)</topic><topic>Induction motors</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>parameter determination</topic><topic>Parameter identification</topic><topic>perfect field-oriented control (PFOC)</topic><topic>Representations</topic><topic>Rotors</topic><topic>Stator windings</topic><topic>Stators</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Meng-Ju</creatorcontrib><creatorcontrib>Grunditz, Emma Arfa</creatorcontrib><creatorcontrib>Thiringer, Torbjorn</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsieh, Meng-Ju</au><au>Grunditz, Emma Arfa</au><au>Thiringer, Torbjorn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Parametric Representation of IM From FEM for More Accurate Torque Predictions: Simulations and Experimental Validations</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>60</volume><issue>5</issue><spage>6660</spage><epage>6671</epage><pages>6660-6671</pages><issn>0093-9994</issn><issn>1939-9367</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>In this work, an updated methodology to determine the parameters of three-phase induction machines (IMs) is developed and presented. The goal of this determination is to achieve a better model representation of induction machines for the usage of a circuit-based control system. First, the theory of the T-form model (TFM) and the inverse &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\Gamma&lt;/tex-math&gt;&lt;/inline-formula&gt;-form model (IGFM) are reviewed. The former review becomes the foundation of the following interpretation of the developing methods for identifying the needed parameters. Next, a 2D electromagnetic finite element method (FEM) model of a 15 kW IM is utilized to demonstrate the strength of the methodology on a real machine. Furthermore, a comparison of results using the conventional test and the newly proposed method is presented, demonstrating the strength of the proposed procedure with enhanced accuracy for the torque and slip prediction. Lastly, experimental results using a 15 kW IM are utilized to demonstrate the usefulness of the proposed parameter determination procedure.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2024.3403806</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5777-1242</orcidid><orcidid>https://orcid.org/0000-0003-2960-5751</orcidid><orcidid>https://orcid.org/0000-0001-5344-7963</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2024-09, Vol.60 (5), p.6660-6671
issn 0093-9994
1939-9367
1939-9367
language eng
recordid cdi_proquest_journals_3107263107
source IEEE Electronic Library (IEL)
subjects Couplings
Electromagnetic induction
Equivalent circuits
Finite element analysis
Finite element method
finite element method (FEM)
Induction machine (IM)
Induction motors
Integrated circuit modeling
Mathematical models
parameter determination
Parameter identification
perfect field-oriented control (PFOC)
Representations
Rotors
Stator windings
Stators
Torque
title Improved Parametric Representation of IM From FEM for More Accurate Torque Predictions: Simulations and Experimental Validations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Parametric%20Representation%20of%20IM%20From%20FEM%20for%20More%20Accurate%20Torque%20Predictions:%20Simulations%20and%20Experimental%20Validations&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Hsieh,%20Meng-Ju&rft.date=2024-09-01&rft.volume=60&rft.issue=5&rft.spage=6660&rft.epage=6671&rft.pages=6660-6671&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2024.3403806&rft_dat=%3Cproquest_RIE%3E3107263107%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107263107&rft_id=info:pmid/&rft_ieee_id=10535711&rfr_iscdi=true