The Editor and the Algorithm: Recommendation Technology in Online News

We run a field experiment to study the relative performance of human curation and automated personalized recommendation technology in the context of online news. We build a simple theoretical model that captures the relative efficacy of personalized algorithmic recommendations and curation based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Management science 2024-09, Vol.70 (9), p.5816-5831
Hauptverfasser: Peukert, Christian, Sen, Ananya, Claussen, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5831
container_issue 9
container_start_page 5816
container_title Management science
container_volume 70
creator Peukert, Christian
Sen, Ananya
Claussen, Jörg
description We run a field experiment to study the relative performance of human curation and automated personalized recommendation technology in the context of online news. We build a simple theoretical model that captures the relative efficacy of personalized algorithmic recommendations and curation based on human expertise. We highlight a critical tension between detailed, yet potentially narrow, information available to the algorithm versus broad (often private), but not scalable, information available to the human editor. Empirically, we show that, on average, algorithmic recommendations can outperform human curation with respect to clicks, but there is significant heterogeneity in this treatment effect. The human editor performs relatively better in the absence of sufficient personal data and when there is greater variation in preferences. These results suggest that reverting to human curation can mitigate the drawbacks of personalized algorithmic recommendations. Our computations show that the optimal combination of human curation and automated recommendation technology can lead to an increase of up to 13% in clicks. In absolute terms, we provide thresholds for when the estimated gains are larger than our estimate of implementation costs. This paper was accepted by Chris Forman, information systems. Funding: C. Peukert acknowledges funding from the Swiss National Science Foundation [Grant No. 100013_197807]. Supplemental Material: The e-companion and data files are available at https://doi.org/10.1287/mnsc.2023.4954 .
doi_str_mv 10.1287/mnsc.2023.4954
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3107229741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107229741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-84d258e21297cb0f1896c45b32491649a7d9fb86de5c95ed33bd56e818c8d86e3</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhoMoOKdXzwHPrUna_PI2xqbCcCDzHNok3TLaZCYdsv_elnr39PHC874fPAA8YpRjIvhz55POCSJFXkpaXoEZpoRllCJ8DWYIEZphieQtuEvpiBDigrMZWO8OFq6M60OElTewH-Ki3Yfo-kP3Aj-tDl1nval6FzzcWX3woQ37C3Qebn3rvIUf9ifdg5umapN9-Ltz8LVe7ZZv2Wb7-r5cbDJNOO0zURpChSWYSK5r1GAhmS5pXZBSYlbKihvZ1IIZS7Wk1hRFbSizAgstjGC2mIOnafcUw_fZpl4dwzn64aUqMOJk2C3xQOUTpWNIKdpGnaLrqnhRGKnRlRpdqdGVGl0NhWwqON-E2KX_-F-yh2rM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107229741</pqid></control><display><type>article</type><title>The Editor and the Algorithm: Recommendation Technology in Online News</title><source>INFORMS PubsOnLine</source><creator>Peukert, Christian ; Sen, Ananya ; Claussen, Jörg</creator><creatorcontrib>Peukert, Christian ; Sen, Ananya ; Claussen, Jörg</creatorcontrib><description>We run a field experiment to study the relative performance of human curation and automated personalized recommendation technology in the context of online news. We build a simple theoretical model that captures the relative efficacy of personalized algorithmic recommendations and curation based on human expertise. We highlight a critical tension between detailed, yet potentially narrow, information available to the algorithm versus broad (often private), but not scalable, information available to the human editor. Empirically, we show that, on average, algorithmic recommendations can outperform human curation with respect to clicks, but there is significant heterogeneity in this treatment effect. The human editor performs relatively better in the absence of sufficient personal data and when there is greater variation in preferences. These results suggest that reverting to human curation can mitigate the drawbacks of personalized algorithmic recommendations. Our computations show that the optimal combination of human curation and automated recommendation technology can lead to an increase of up to 13% in clicks. In absolute terms, we provide thresholds for when the estimated gains are larger than our estimate of implementation costs. This paper was accepted by Chris Forman, information systems. Funding: C. Peukert acknowledges funding from the Swiss National Science Foundation [Grant No. 100013_197807]. Supplemental Material: The e-companion and data files are available at https://doi.org/10.1287/mnsc.2023.4954 .</description><identifier>ISSN: 0025-1909</identifier><identifier>EISSN: 1526-5501</identifier><identifier>DOI: 10.1287/mnsc.2023.4954</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>algorithmic recommendations ; Algorithms ; Automation ; Customization ; data ; Efficacy ; Electronic newspapers ; Gains ; human expertise ; Humans ; Management science ; online news ; Technology ; technology adoption ; Thresholds</subject><ispartof>Management science, 2024-09, Vol.70 (9), p.5816-5831</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences Sep 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-84d258e21297cb0f1896c45b32491649a7d9fb86de5c95ed33bd56e818c8d86e3</citedby><cites>FETCH-LOGICAL-c275t-84d258e21297cb0f1896c45b32491649a7d9fb86de5c95ed33bd56e818c8d86e3</cites><orcidid>0000-0001-8432-8860 ; 0000-0002-9082-6871 ; 0000-0003-3997-8850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mnsc.2023.4954$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Peukert, Christian</creatorcontrib><creatorcontrib>Sen, Ananya</creatorcontrib><creatorcontrib>Claussen, Jörg</creatorcontrib><title>The Editor and the Algorithm: Recommendation Technology in Online News</title><title>Management science</title><description>We run a field experiment to study the relative performance of human curation and automated personalized recommendation technology in the context of online news. We build a simple theoretical model that captures the relative efficacy of personalized algorithmic recommendations and curation based on human expertise. We highlight a critical tension between detailed, yet potentially narrow, information available to the algorithm versus broad (often private), but not scalable, information available to the human editor. Empirically, we show that, on average, algorithmic recommendations can outperform human curation with respect to clicks, but there is significant heterogeneity in this treatment effect. The human editor performs relatively better in the absence of sufficient personal data and when there is greater variation in preferences. These results suggest that reverting to human curation can mitigate the drawbacks of personalized algorithmic recommendations. Our computations show that the optimal combination of human curation and automated recommendation technology can lead to an increase of up to 13% in clicks. In absolute terms, we provide thresholds for when the estimated gains are larger than our estimate of implementation costs. This paper was accepted by Chris Forman, information systems. Funding: C. Peukert acknowledges funding from the Swiss National Science Foundation [Grant No. 100013_197807]. Supplemental Material: The e-companion and data files are available at https://doi.org/10.1287/mnsc.2023.4954 .</description><subject>algorithmic recommendations</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Customization</subject><subject>data</subject><subject>Efficacy</subject><subject>Electronic newspapers</subject><subject>Gains</subject><subject>human expertise</subject><subject>Humans</subject><subject>Management science</subject><subject>online news</subject><subject>Technology</subject><subject>technology adoption</subject><subject>Thresholds</subject><issn>0025-1909</issn><issn>1526-5501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAYhoMoOKdXzwHPrUna_PI2xqbCcCDzHNok3TLaZCYdsv_elnr39PHC874fPAA8YpRjIvhz55POCSJFXkpaXoEZpoRllCJ8DWYIEZphieQtuEvpiBDigrMZWO8OFq6M60OElTewH-Ki3Yfo-kP3Aj-tDl1nval6FzzcWX3woQ37C3Qebn3rvIUf9ifdg5umapN9-Ltz8LVe7ZZv2Wb7-r5cbDJNOO0zURpChSWYSK5r1GAhmS5pXZBSYlbKihvZ1IIZS7Wk1hRFbSizAgstjGC2mIOnafcUw_fZpl4dwzn64aUqMOJk2C3xQOUTpWNIKdpGnaLrqnhRGKnRlRpdqdGVGl0NhWwqON-E2KX_-F-yh2rM</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Peukert, Christian</creator><creator>Sen, Ananya</creator><creator>Claussen, Jörg</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0001-8432-8860</orcidid><orcidid>https://orcid.org/0000-0002-9082-6871</orcidid><orcidid>https://orcid.org/0000-0003-3997-8850</orcidid></search><sort><creationdate>20240901</creationdate><title>The Editor and the Algorithm: Recommendation Technology in Online News</title><author>Peukert, Christian ; Sen, Ananya ; Claussen, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-84d258e21297cb0f1896c45b32491649a7d9fb86de5c95ed33bd56e818c8d86e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>algorithmic recommendations</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Customization</topic><topic>data</topic><topic>Efficacy</topic><topic>Electronic newspapers</topic><topic>Gains</topic><topic>human expertise</topic><topic>Humans</topic><topic>Management science</topic><topic>online news</topic><topic>Technology</topic><topic>technology adoption</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peukert, Christian</creatorcontrib><creatorcontrib>Sen, Ananya</creatorcontrib><creatorcontrib>Claussen, Jörg</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peukert, Christian</au><au>Sen, Ananya</au><au>Claussen, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Editor and the Algorithm: Recommendation Technology in Online News</atitle><jtitle>Management science</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>70</volume><issue>9</issue><spage>5816</spage><epage>5831</epage><pages>5816-5831</pages><issn>0025-1909</issn><eissn>1526-5501</eissn><abstract>We run a field experiment to study the relative performance of human curation and automated personalized recommendation technology in the context of online news. We build a simple theoretical model that captures the relative efficacy of personalized algorithmic recommendations and curation based on human expertise. We highlight a critical tension between detailed, yet potentially narrow, information available to the algorithm versus broad (often private), but not scalable, information available to the human editor. Empirically, we show that, on average, algorithmic recommendations can outperform human curation with respect to clicks, but there is significant heterogeneity in this treatment effect. The human editor performs relatively better in the absence of sufficient personal data and when there is greater variation in preferences. These results suggest that reverting to human curation can mitigate the drawbacks of personalized algorithmic recommendations. Our computations show that the optimal combination of human curation and automated recommendation technology can lead to an increase of up to 13% in clicks. In absolute terms, we provide thresholds for when the estimated gains are larger than our estimate of implementation costs. This paper was accepted by Chris Forman, information systems. Funding: C. Peukert acknowledges funding from the Swiss National Science Foundation [Grant No. 100013_197807]. Supplemental Material: The e-companion and data files are available at https://doi.org/10.1287/mnsc.2023.4954 .</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/mnsc.2023.4954</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8432-8860</orcidid><orcidid>https://orcid.org/0000-0002-9082-6871</orcidid><orcidid>https://orcid.org/0000-0003-3997-8850</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-1909
ispartof Management science, 2024-09, Vol.70 (9), p.5816-5831
issn 0025-1909
1526-5501
language eng
recordid cdi_proquest_journals_3107229741
source INFORMS PubsOnLine
subjects algorithmic recommendations
Algorithms
Automation
Customization
data
Efficacy
Electronic newspapers
Gains
human expertise
Humans
Management science
online news
Technology
technology adoption
Thresholds
title The Editor and the Algorithm: Recommendation Technology in Online News
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Editor%20and%20the%20Algorithm:%20Recommendation%20Technology%20in%20Online%20News&rft.jtitle=Management%20science&rft.au=Peukert,%20Christian&rft.date=2024-09-01&rft.volume=70&rft.issue=9&rft.spage=5816&rft.epage=5831&rft.pages=5816-5831&rft.issn=0025-1909&rft.eissn=1526-5501&rft_id=info:doi/10.1287/mnsc.2023.4954&rft_dat=%3Cproquest_cross%3E3107229741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107229741&rft_id=info:pmid/&rfr_iscdi=true