Multistream BertGCN for Sentiment Classification Based on Cross-Document Learning
Very recently, the BERT graph convolutional network (BertGCN) model has attracted much attention from researchers due to its good text classification performance. However, just using original documents in the corpus to construct the topology of graphs for GCN-based models may lose some effective inf...
Gespeichert in:
Veröffentlicht in: | Quantum engineering 2023-11, Vol.2023, p.1-9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Quantum engineering |
container_volume | 2023 |
creator | Li, Meng Xie, Yujin Yang, Weifeng Chen, Shenyu |
description | Very recently, the BERT graph convolutional network (BertGCN) model has attracted much attention from researchers due to its good text classification performance. However, just using original documents in the corpus to construct the topology of graphs for GCN-based models may lose some effective information. In this paper, we focus on sentiment classification, an important branch of text classification, and propose the multistream BERT graph convolutional network (MS-BertGCN) for sentiment classification based on cross-document learning. In the proposed method, we first combine the documents in the training set based on within-class similarity. Then, each heterogeneous graph is constructed using a group of combinations of documents for the single-stream BertGCN model. Finally, we construct multistream-BertGCN (MS-BertGCN) based on multiple heterogeneous graphs constructed from different groups of combined documents. The experimental results show that our MS-BertGCN model outperforms state-of-the-art methods on sentiment classification tasks. |
doi_str_mv | 10.1155/2023/3668960 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3107135450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107135450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1390-ac6b575129d2c93ee6e085f13251b623e6e1b8292c96856653a529a42cef39223</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEtPYjR9QiSOUOXGTNkdWYCANEALOUZqmkGlrR9IK8e_J2A6cuNjP8ic_6xFySuGSUs6nDBhOUYhCCjggI8bzPIUsh8M_-phMQlgCAKNZxhFH5PlhWPUu9N7qdTKzvp-Xj0nT-eTFtr1bx5KUKx2Ca5zRvevaZKaDrZMoSt-FkF53ZvjFFlb71rXvJ-So0atgJ_s-Jm-3N6_lXbp4mt-XV4vUUJSQaiMqnnPKZM2MRGuFhYI3FBmnlWAYZ1oVTMalKLgQHDVnUmfM2AYlYzgmZ7u7G999Djb0atkNvo2WCinkFHnGIVIXO8psv_W2URvv1tp_Kwpqm5va5qb2uUX8fId_uLbWX-5_-gckuWqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107135450</pqid></control><display><type>article</type><title>Multistream BertGCN for Sentiment Classification Based on Cross-Document Learning</title><source>Wiley-Blackwell Open Access Titles</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Meng ; Xie, Yujin ; Yang, Weifeng ; Chen, Shenyu</creator><contributor>Dong, Shi Hai ; Shi Hai Dong</contributor><creatorcontrib>Li, Meng ; Xie, Yujin ; Yang, Weifeng ; Chen, Shenyu ; Dong, Shi Hai ; Shi Hai Dong</creatorcontrib><description>Very recently, the BERT graph convolutional network (BertGCN) model has attracted much attention from researchers due to its good text classification performance. However, just using original documents in the corpus to construct the topology of graphs for GCN-based models may lose some effective information. In this paper, we focus on sentiment classification, an important branch of text classification, and propose the multistream BERT graph convolutional network (MS-BertGCN) for sentiment classification based on cross-document learning. In the proposed method, we first combine the documents in the training set based on within-class similarity. Then, each heterogeneous graph is constructed using a group of combinations of documents for the single-stream BertGCN model. Finally, we construct multistream-BertGCN (MS-BertGCN) based on multiple heterogeneous graphs constructed from different groups of combined documents. The experimental results show that our MS-BertGCN model outperforms state-of-the-art methods on sentiment classification tasks.</description><identifier>ISSN: 2577-0470</identifier><identifier>EISSN: 2577-0470</identifier><identifier>DOI: 10.1155/2023/3668960</identifier><language>eng</language><publisher>Hoboken: Hindawi</publisher><subject>Accuracy ; Artificial neural networks ; Classification ; Datasets ; Deep learning ; Dictionaries ; Documents ; Experiments ; Graph representations ; Graphs ; Information processing ; Language ; Learning ; Machine learning ; Natural language processing ; Neural networks ; Public opinion surveys ; Sentiment analysis ; Text categorization ; Topology</subject><ispartof>Quantum engineering, 2023-11, Vol.2023, p.1-9</ispartof><rights>Copyright © 2023 Meng Li et al.</rights><rights>Copyright © 2023 Meng Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1390-ac6b575129d2c93ee6e085f13251b623e6e1b8292c96856653a529a42cef39223</cites><orcidid>0000-0001-6061-3915 ; 0000-0002-9527-1422 ; 0000-0003-3497-4391 ; 0000-0002-0462-6727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Dong, Shi Hai</contributor><contributor>Shi Hai Dong</contributor><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Xie, Yujin</creatorcontrib><creatorcontrib>Yang, Weifeng</creatorcontrib><creatorcontrib>Chen, Shenyu</creatorcontrib><title>Multistream BertGCN for Sentiment Classification Based on Cross-Document Learning</title><title>Quantum engineering</title><description>Very recently, the BERT graph convolutional network (BertGCN) model has attracted much attention from researchers due to its good text classification performance. However, just using original documents in the corpus to construct the topology of graphs for GCN-based models may lose some effective information. In this paper, we focus on sentiment classification, an important branch of text classification, and propose the multistream BERT graph convolutional network (MS-BertGCN) for sentiment classification based on cross-document learning. In the proposed method, we first combine the documents in the training set based on within-class similarity. Then, each heterogeneous graph is constructed using a group of combinations of documents for the single-stream BertGCN model. Finally, we construct multistream-BertGCN (MS-BertGCN) based on multiple heterogeneous graphs constructed from different groups of combined documents. The experimental results show that our MS-BertGCN model outperforms state-of-the-art methods on sentiment classification tasks.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Dictionaries</subject><subject>Documents</subject><subject>Experiments</subject><subject>Graph representations</subject><subject>Graphs</subject><subject>Information processing</subject><subject>Language</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Public opinion surveys</subject><subject>Sentiment analysis</subject><subject>Text categorization</subject><subject>Topology</subject><issn>2577-0470</issn><issn>2577-0470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kEFPwzAMhSMEEtPYjR9QiSOUOXGTNkdWYCANEALOUZqmkGlrR9IK8e_J2A6cuNjP8ic_6xFySuGSUs6nDBhOUYhCCjggI8bzPIUsh8M_-phMQlgCAKNZxhFH5PlhWPUu9N7qdTKzvp-Xj0nT-eTFtr1bx5KUKx2Ca5zRvevaZKaDrZMoSt-FkF53ZvjFFlb71rXvJ-So0atgJ_s-Jm-3N6_lXbp4mt-XV4vUUJSQaiMqnnPKZM2MRGuFhYI3FBmnlWAYZ1oVTMalKLgQHDVnUmfM2AYlYzgmZ7u7G999Djb0atkNvo2WCinkFHnGIVIXO8psv_W2URvv1tp_Kwpqm5va5qb2uUX8fId_uLbWX-5_-gckuWqE</recordid><startdate>20231113</startdate><enddate>20231113</enddate><creator>Li, Meng</creator><creator>Xie, Yujin</creator><creator>Yang, Weifeng</creator><creator>Chen, Shenyu</creator><general>Hindawi</general><general>Wiley Subscription Services, Inc</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-6061-3915</orcidid><orcidid>https://orcid.org/0000-0002-9527-1422</orcidid><orcidid>https://orcid.org/0000-0003-3497-4391</orcidid><orcidid>https://orcid.org/0000-0002-0462-6727</orcidid></search><sort><creationdate>20231113</creationdate><title>Multistream BertGCN for Sentiment Classification Based on Cross-Document Learning</title><author>Li, Meng ; Xie, Yujin ; Yang, Weifeng ; Chen, Shenyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1390-ac6b575129d2c93ee6e085f13251b623e6e1b8292c96856653a529a42cef39223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Dictionaries</topic><topic>Documents</topic><topic>Experiments</topic><topic>Graph representations</topic><topic>Graphs</topic><topic>Information processing</topic><topic>Language</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Public opinion surveys</topic><topic>Sentiment analysis</topic><topic>Text categorization</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Xie, Yujin</creatorcontrib><creatorcontrib>Yang, Weifeng</creatorcontrib><creatorcontrib>Chen, Shenyu</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Quantum engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Meng</au><au>Xie, Yujin</au><au>Yang, Weifeng</au><au>Chen, Shenyu</au><au>Dong, Shi Hai</au><au>Shi Hai Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistream BertGCN for Sentiment Classification Based on Cross-Document Learning</atitle><jtitle>Quantum engineering</jtitle><date>2023-11-13</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2577-0470</issn><eissn>2577-0470</eissn><abstract>Very recently, the BERT graph convolutional network (BertGCN) model has attracted much attention from researchers due to its good text classification performance. However, just using original documents in the corpus to construct the topology of graphs for GCN-based models may lose some effective information. In this paper, we focus on sentiment classification, an important branch of text classification, and propose the multistream BERT graph convolutional network (MS-BertGCN) for sentiment classification based on cross-document learning. In the proposed method, we first combine the documents in the training set based on within-class similarity. Then, each heterogeneous graph is constructed using a group of combinations of documents for the single-stream BertGCN model. Finally, we construct multistream-BertGCN (MS-BertGCN) based on multiple heterogeneous graphs constructed from different groups of combined documents. The experimental results show that our MS-BertGCN model outperforms state-of-the-art methods on sentiment classification tasks.</abstract><cop>Hoboken</cop><pub>Hindawi</pub><doi>10.1155/2023/3668960</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6061-3915</orcidid><orcidid>https://orcid.org/0000-0002-9527-1422</orcidid><orcidid>https://orcid.org/0000-0003-3497-4391</orcidid><orcidid>https://orcid.org/0000-0002-0462-6727</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2577-0470 |
ispartof | Quantum engineering, 2023-11, Vol.2023, p.1-9 |
issn | 2577-0470 2577-0470 |
language | eng |
recordid | cdi_proquest_journals_3107135450 |
source | Wiley-Blackwell Open Access Titles; Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | Accuracy Artificial neural networks Classification Datasets Deep learning Dictionaries Documents Experiments Graph representations Graphs Information processing Language Learning Machine learning Natural language processing Neural networks Public opinion surveys Sentiment analysis Text categorization Topology |
title | Multistream BertGCN for Sentiment Classification Based on Cross-Document Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistream%20BertGCN%20for%20Sentiment%20Classification%20Based%20on%20Cross-Document%20Learning&rft.jtitle=Quantum%20engineering&rft.au=Li,%20Meng&rft.date=2023-11-13&rft.volume=2023&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2577-0470&rft.eissn=2577-0470&rft_id=info:doi/10.1155/2023/3668960&rft_dat=%3Cproquest_cross%3E3107135450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107135450&rft_id=info:pmid/&rfr_iscdi=true |