A local approach to stability groups

In this short note we prove a local version of Philip Hall’s theorem on the nilpotency of the stability group of a chain of subgroups by only using elementary commutator calculus (Hall’s theorem is a direct consequence of our result). This provides a new way of dealing with stability groups.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2024-09, Vol.60 (2), p.599-602
Hauptverfasser: Newell, Martin L., Trombetti, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 602
container_issue 2
container_start_page 599
container_title Journal of algebraic combinatorics
container_volume 60
creator Newell, Martin L.
Trombetti, Marco
description In this short note we prove a local version of Philip Hall’s theorem on the nilpotency of the stability group of a chain of subgroups by only using elementary commutator calculus (Hall’s theorem is a direct consequence of our result). This provides a new way of dealing with stability groups.
doi_str_mv 10.1007/s10801-024-01345-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3107123815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107123815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-92d9a8b54d19c943ad4efd3148b845bd32c093a492fd752af1788a83bb19244c3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5giwWp4zx-K31hVQJEqscBs2U5SUoUm2MnQf48hSGxMb7n3vqPD2DXCHQKU9wnBAHIQigNKpbk5YQvUpeCEJE7ZAkhoTobonF2ktAcAMqgX7HZVdH1wXeGGIfYuvBdjX6TR-bZrx2Oxi_00pEt21rgu1Ve_d8neHh9e1xu-fXl6Xq-2PAilRk6iIme8VhVSICVdpeqmkqiMN0r7SooAJJ0i0VSlFq7B0hhnpPeZUakgl-xm3s0on1OdRrvvp3jIL61EKFHIzJxTYk6F2KcU68YOsf1w8WgR7LcNO9uw2Yb9sWFNLsm5lHL4sKvj3_Q_rS_5SmAm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107123815</pqid></control><display><type>article</type><title>A local approach to stability groups</title><source>SpringerLink Journals</source><creator>Newell, Martin L. ; Trombetti, Marco</creator><creatorcontrib>Newell, Martin L. ; Trombetti, Marco</creatorcontrib><description>In this short note we prove a local version of Philip Hall’s theorem on the nilpotency of the stability group of a chain of subgroups by only using elementary commutator calculus (Hall’s theorem is a direct consequence of our result). This provides a new way of dealing with stability groups.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-024-01345-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Commutators ; Computer Science ; Convex and Discrete Geometry ; Group Theory and Generalizations ; Lattices ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Stability ; Subgroups ; Theorems</subject><ispartof>Journal of algebraic combinatorics, 2024-09, Vol.60 (2), p.599-602</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-92d9a8b54d19c943ad4efd3148b845bd32c093a492fd752af1788a83bb19244c3</cites><orcidid>0000-0003-4532-3690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10801-024-01345-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10801-024-01345-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Newell, Martin L.</creatorcontrib><creatorcontrib>Trombetti, Marco</creatorcontrib><title>A local approach to stability groups</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>In this short note we prove a local version of Philip Hall’s theorem on the nilpotency of the stability group of a chain of subgroups by only using elementary commutator calculus (Hall’s theorem is a direct consequence of our result). This provides a new way of dealing with stability groups.</description><subject>Combinatorics</subject><subject>Commutators</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Stability</subject><subject>Subgroups</subject><subject>Theorems</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kD1PwzAURS0EEqXwB5giwWp4zx-K31hVQJEqscBs2U5SUoUm2MnQf48hSGxMb7n3vqPD2DXCHQKU9wnBAHIQigNKpbk5YQvUpeCEJE7ZAkhoTobonF2ktAcAMqgX7HZVdH1wXeGGIfYuvBdjX6TR-bZrx2Oxi_00pEt21rgu1Ve_d8neHh9e1xu-fXl6Xq-2PAilRk6iIme8VhVSICVdpeqmkqiMN0r7SooAJJ0i0VSlFq7B0hhnpPeZUakgl-xm3s0on1OdRrvvp3jIL61EKFHIzJxTYk6F2KcU68YOsf1w8WgR7LcNO9uw2Yb9sWFNLsm5lHL4sKvj3_Q_rS_5SmAm</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Newell, Martin L.</creator><creator>Trombetti, Marco</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4532-3690</orcidid></search><sort><creationdate>20240901</creationdate><title>A local approach to stability groups</title><author>Newell, Martin L. ; Trombetti, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-92d9a8b54d19c943ad4efd3148b845bd32c093a492fd752af1788a83bb19244c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorics</topic><topic>Commutators</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Stability</topic><topic>Subgroups</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newell, Martin L.</creatorcontrib><creatorcontrib>Trombetti, Marco</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newell, Martin L.</au><au>Trombetti, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A local approach to stability groups</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>60</volume><issue>2</issue><spage>599</spage><epage>602</epage><pages>599-602</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>In this short note we prove a local version of Philip Hall’s theorem on the nilpotency of the stability group of a chain of subgroups by only using elementary commutator calculus (Hall’s theorem is a direct consequence of our result). This provides a new way of dealing with stability groups.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-024-01345-8</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-4532-3690</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-9899
ispartof Journal of algebraic combinatorics, 2024-09, Vol.60 (2), p.599-602
issn 0925-9899
1572-9192
language eng
recordid cdi_proquest_journals_3107123815
source SpringerLink Journals
subjects Combinatorics
Commutators
Computer Science
Convex and Discrete Geometry
Group Theory and Generalizations
Lattices
Mathematics
Mathematics and Statistics
Order
Ordered Algebraic Structures
Stability
Subgroups
Theorems
title A local approach to stability groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20local%20approach%20to%20stability%20groups&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Newell,%20Martin%20L.&rft.date=2024-09-01&rft.volume=60&rft.issue=2&rft.spage=599&rft.epage=602&rft.pages=599-602&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-024-01345-8&rft_dat=%3Cproquest_cross%3E3107123815%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107123815&rft_id=info:pmid/&rfr_iscdi=true