EGANet: Elevation-guided attention network for scene classification in panchromatic remote sensing images
Scene classification in panchromatic (PAN) remote sensing images is a challenging task due to arbitrary spatial arrangement of a variety of objects with complex background in the absence of RGB-channel information. In this paper, we propose an elevation-guided attention network (EGANet) for multimod...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2024-10, Vol.36 (29), p.18251-18264 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18264 |
---|---|
container_issue | 29 |
container_start_page | 18251 |
container_title | Neural computing & applications |
container_volume | 36 |
creator | Datla, Rajeshreddy Swetha, G. Gayathri, C. |
description | Scene classification in panchromatic (PAN) remote sensing images is a challenging task due to arbitrary spatial arrangement of a variety of objects with complex background in the absence of RGB-channel information. In this paper, we propose an elevation-guided attention network (EGANet) for multimodal scene classification in panchromatic images by leveraging elevation information from digital elevation model (DEM). The proposed network helps to identify the potential regions containing prominent class-specific features in the panchromatic image scene with the attention of elevation features extracted from a convolution neural network (CNN). Then, elevation-guided features in panchromatic image scene are obtained by the correlation of these two modalities for effective scene classification. The efficacy of the proposed method is demonstrated on Cartosat-1 panchromatic remote sensing image datasets with a lot of variations in view-angle, occlusion, background, and illumination conditions. The experimental results show that our proposed EGANet achieves scene classification accuracy with an improvement of 5% in comparison with the state-of-the-art approaches. |
doi_str_mv | 10.1007/s00521-024-10134-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106852385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106852385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1150-5afcdd6637e9df3edee9c04d871bf4c4bdee53260d6cd34398e0ebb9c20d00123</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwscTasYydNuFVVKUgVXOBsJfYmuLR2sVMQb1-3QeLGaaXZmf35CLnmcMsBJncRIM84g0wyDlxIBidkxKUQTEBenpIRVDK1CynOyUWMKwCQRZmPiJ0vps_Y39P5Gr_q3nrHup01aGjd9-gOAnXYf_vwQVsfaNTokOp1HaNtrT4mqHV0Wzv9HvwmCZoG3PgeaUQXreuo3dQdxkty1tbriFe_dUzeHuavs0e2fFk8zaZLpjnPgeV1q40pCjHByrQCDWKlQZpywptWatkkIRdZAabQRkhRlQjYNJXOwADwTIzJzTB3G_znDmOvVn4XXFqpBIf0dCbKPLmywaWDjzFgq7Yh3Rl-FAd1QKoGpCohVUekClJIDKGYzK7D8Df6n9QehWZ7MA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106852385</pqid></control><display><type>article</type><title>EGANet: Elevation-guided attention network for scene classification in panchromatic remote sensing images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Datla, Rajeshreddy ; Swetha, G. ; Gayathri, C.</creator><creatorcontrib>Datla, Rajeshreddy ; Swetha, G. ; Gayathri, C.</creatorcontrib><description>Scene classification in panchromatic (PAN) remote sensing images is a challenging task due to arbitrary spatial arrangement of a variety of objects with complex background in the absence of RGB-channel information. In this paper, we propose an elevation-guided attention network (EGANet) for multimodal scene classification in panchromatic images by leveraging elevation information from digital elevation model (DEM). The proposed network helps to identify the potential regions containing prominent class-specific features in the panchromatic image scene with the attention of elevation features extracted from a convolution neural network (CNN). Then, elevation-guided features in panchromatic image scene are obtained by the correlation of these two modalities for effective scene classification. The efficacy of the proposed method is demonstrated on Cartosat-1 panchromatic remote sensing image datasets with a lot of variations in view-angle, occlusion, background, and illumination conditions. The experimental results show that our proposed EGANet achieves scene classification accuracy with an improvement of 5% in comparison with the state-of-the-art approaches.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-024-10134-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Digital Elevation Models ; Digital imaging ; Effectiveness ; Feature extraction ; Image Processing and Computer Vision ; Occlusion ; Original Article ; Probability and Statistics in Computer Science ; Remote sensing</subject><ispartof>Neural computing & applications, 2024-10, Vol.36 (29), p.18251-18264</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1150-5afcdd6637e9df3edee9c04d871bf4c4bdee53260d6cd34398e0ebb9c20d00123</cites><orcidid>0000-0002-2980-9175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-024-10134-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-024-10134-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Datla, Rajeshreddy</creatorcontrib><creatorcontrib>Swetha, G.</creatorcontrib><creatorcontrib>Gayathri, C.</creatorcontrib><title>EGANet: Elevation-guided attention network for scene classification in panchromatic remote sensing images</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Scene classification in panchromatic (PAN) remote sensing images is a challenging task due to arbitrary spatial arrangement of a variety of objects with complex background in the absence of RGB-channel information. In this paper, we propose an elevation-guided attention network (EGANet) for multimodal scene classification in panchromatic images by leveraging elevation information from digital elevation model (DEM). The proposed network helps to identify the potential regions containing prominent class-specific features in the panchromatic image scene with the attention of elevation features extracted from a convolution neural network (CNN). Then, elevation-guided features in panchromatic image scene are obtained by the correlation of these two modalities for effective scene classification. The efficacy of the proposed method is demonstrated on Cartosat-1 panchromatic remote sensing image datasets with a lot of variations in view-angle, occlusion, background, and illumination conditions. The experimental results show that our proposed EGANet achieves scene classification accuracy with an improvement of 5% in comparison with the state-of-the-art approaches.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Digital Elevation Models</subject><subject>Digital imaging</subject><subject>Effectiveness</subject><subject>Feature extraction</subject><subject>Image Processing and Computer Vision</subject><subject>Occlusion</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Remote sensing</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwscTasYydNuFVVKUgVXOBsJfYmuLR2sVMQb1-3QeLGaaXZmf35CLnmcMsBJncRIM84g0wyDlxIBidkxKUQTEBenpIRVDK1CynOyUWMKwCQRZmPiJ0vps_Y39P5Gr_q3nrHup01aGjd9-gOAnXYf_vwQVsfaNTokOp1HaNtrT4mqHV0Wzv9HvwmCZoG3PgeaUQXreuo3dQdxkty1tbriFe_dUzeHuavs0e2fFk8zaZLpjnPgeV1q40pCjHByrQCDWKlQZpywptWatkkIRdZAabQRkhRlQjYNJXOwADwTIzJzTB3G_znDmOvVn4XXFqpBIf0dCbKPLmywaWDjzFgq7Yh3Rl-FAd1QKoGpCohVUekClJIDKGYzK7D8Df6n9QehWZ7MA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Datla, Rajeshreddy</creator><creator>Swetha, G.</creator><creator>Gayathri, C.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2980-9175</orcidid></search><sort><creationdate>20241001</creationdate><title>EGANet: Elevation-guided attention network for scene classification in panchromatic remote sensing images</title><author>Datla, Rajeshreddy ; Swetha, G. ; Gayathri, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1150-5afcdd6637e9df3edee9c04d871bf4c4bdee53260d6cd34398e0ebb9c20d00123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Digital Elevation Models</topic><topic>Digital imaging</topic><topic>Effectiveness</topic><topic>Feature extraction</topic><topic>Image Processing and Computer Vision</topic><topic>Occlusion</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Datla, Rajeshreddy</creatorcontrib><creatorcontrib>Swetha, G.</creatorcontrib><creatorcontrib>Gayathri, C.</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Datla, Rajeshreddy</au><au>Swetha, G.</au><au>Gayathri, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EGANet: Elevation-guided attention network for scene classification in panchromatic remote sensing images</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>36</volume><issue>29</issue><spage>18251</spage><epage>18264</epage><pages>18251-18264</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Scene classification in panchromatic (PAN) remote sensing images is a challenging task due to arbitrary spatial arrangement of a variety of objects with complex background in the absence of RGB-channel information. In this paper, we propose an elevation-guided attention network (EGANet) for multimodal scene classification in panchromatic images by leveraging elevation information from digital elevation model (DEM). The proposed network helps to identify the potential regions containing prominent class-specific features in the panchromatic image scene with the attention of elevation features extracted from a convolution neural network (CNN). Then, elevation-guided features in panchromatic image scene are obtained by the correlation of these two modalities for effective scene classification. The efficacy of the proposed method is demonstrated on Cartosat-1 panchromatic remote sensing image datasets with a lot of variations in view-angle, occlusion, background, and illumination conditions. The experimental results show that our proposed EGANet achieves scene classification accuracy with an improvement of 5% in comparison with the state-of-the-art approaches.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-024-10134-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2980-9175</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2024-10, Vol.36 (29), p.18251-18264 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_3106852385 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Artificial neural networks Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Digital Elevation Models Digital imaging Effectiveness Feature extraction Image Processing and Computer Vision Occlusion Original Article Probability and Statistics in Computer Science Remote sensing |
title | EGANet: Elevation-guided attention network for scene classification in panchromatic remote sensing images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EGANet:%20Elevation-guided%20attention%20network%20for%20scene%20classification%20in%20panchromatic%20remote%20sensing%20images&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Datla,%20Rajeshreddy&rft.date=2024-10-01&rft.volume=36&rft.issue=29&rft.spage=18251&rft.epage=18264&rft.pages=18251-18264&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-024-10134-0&rft_dat=%3Cproquest_cross%3E3106852385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106852385&rft_id=info:pmid/&rfr_iscdi=true |