Numerical Solution and Parameters Identification for the Integer-Fractal MIM Solute Transport Model

An integer-fractal mobile-immobile (MIM) model for reactive solute transport in a heterogeneous porous media is investigated, where the transport in the mobile zone is given by an advection-dispersion equation, and the diffusion in the immobile zone is described by a time fractional differential equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IAENG international journal of applied mathematics 2024-08, Vol.54 (8), p.1545-1552
Hauptverfasser: Lv, Haoming, Yu, Chengyuan, Liu, Wenyi, Li, Gongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1552
container_issue 8
container_start_page 1545
container_title IAENG international journal of applied mathematics
container_volume 54
creator Lv, Haoming
Yu, Chengyuan
Liu, Wenyi
Li, Gongsheng
description An integer-fractal mobile-immobile (MIM) model for reactive solute transport in a heterogeneous porous media is investigated, where the transport in the mobile zone is given by an advection-dispersion equation, and the diffusion in the immobile zone is described by a time fractional differential equation. A finite difference scheme is put forward to solve the MIM model, and convergence and stability of the scheme are proved based on the spectrum estimation of the coefficient matrix. An inverse problem of identifying the fractional order and the degradation coefficient is considered with the measured data in the mobile zone, and uniqueness of the inverse problem is proved by the method of Laplace transform. Numerical inversions with noisy data are presented to demonstrate a numerical stability of the inverse problem
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3106765868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106765868</sourcerecordid><originalsourceid>FETCH-proquest_journals_31067658683</originalsourceid><addsrcrecordid>eNqNjE0LgkAYhJcoyD7-w0JnQZPW3XMkeTCCvMuir6Wsu_bu-v9bKjo3lxl4ZmZGgliIfSgEZ_NfTvmSrKzto4gJr4DUl2kA7Gqp6M2oyXVGU6kbepUoB3CAluYNaNe1vvOmrUHqHkBz7eAOGGYoa-fnRV58LoCWKLUdDTpamAbUhixaqSxsv74mu-xUHs_hiOY5gXVVbybUHlVJHLGUHTjjyX-tFyrDR3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106765868</pqid></control><display><type>article</type><title>Numerical Solution and Parameters Identification for the Integer-Fractal MIM Solute Transport Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lv, Haoming ; Yu, Chengyuan ; Liu, Wenyi ; Li, Gongsheng</creator><creatorcontrib>Lv, Haoming ; Yu, Chengyuan ; Liu, Wenyi ; Li, Gongsheng</creatorcontrib><description>An integer-fractal mobile-immobile (MIM) model for reactive solute transport in a heterogeneous porous media is investigated, where the transport in the mobile zone is given by an advection-dispersion equation, and the diffusion in the immobile zone is described by a time fractional differential equation. A finite difference scheme is put forward to solve the MIM model, and convergence and stability of the scheme are proved based on the spectrum estimation of the coefficient matrix. An inverse problem of identifying the fractional order and the degradation coefficient is considered with the measured data in the mobile zone, and uniqueness of the inverse problem is proved by the method of Laplace transform. Numerical inversions with noisy data are presented to demonstrate a numerical stability of the inverse problem</description><identifier>ISSN: 1992-9978</identifier><identifier>EISSN: 1992-9986</identifier><language>eng</language><publisher>Hong Kong: International Association of Engineers</publisher><subject>Adsorption ; Differential equations ; Diffusion ; Finite difference method ; Fractals ; Fractional calculus ; Graduate students ; Integers ; Inverse problems ; Inversions ; Laplace transforms ; Numerical stability ; Parameter identification ; Porous media ; Stability</subject><ispartof>IAENG international journal of applied mathematics, 2024-08, Vol.54 (8), p.1545-1552</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the“License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Lv, Haoming</creatorcontrib><creatorcontrib>Yu, Chengyuan</creatorcontrib><creatorcontrib>Liu, Wenyi</creatorcontrib><creatorcontrib>Li, Gongsheng</creatorcontrib><title>Numerical Solution and Parameters Identification for the Integer-Fractal MIM Solute Transport Model</title><title>IAENG international journal of applied mathematics</title><description>An integer-fractal mobile-immobile (MIM) model for reactive solute transport in a heterogeneous porous media is investigated, where the transport in the mobile zone is given by an advection-dispersion equation, and the diffusion in the immobile zone is described by a time fractional differential equation. A finite difference scheme is put forward to solve the MIM model, and convergence and stability of the scheme are proved based on the spectrum estimation of the coefficient matrix. An inverse problem of identifying the fractional order and the degradation coefficient is considered with the measured data in the mobile zone, and uniqueness of the inverse problem is proved by the method of Laplace transform. Numerical inversions with noisy data are presented to demonstrate a numerical stability of the inverse problem</description><subject>Adsorption</subject><subject>Differential equations</subject><subject>Diffusion</subject><subject>Finite difference method</subject><subject>Fractals</subject><subject>Fractional calculus</subject><subject>Graduate students</subject><subject>Integers</subject><subject>Inverse problems</subject><subject>Inversions</subject><subject>Laplace transforms</subject><subject>Numerical stability</subject><subject>Parameter identification</subject><subject>Porous media</subject><subject>Stability</subject><issn>1992-9978</issn><issn>1992-9986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNjE0LgkAYhJcoyD7-w0JnQZPW3XMkeTCCvMuir6Wsu_bu-v9bKjo3lxl4ZmZGgliIfSgEZ_NfTvmSrKzto4gJr4DUl2kA7Gqp6M2oyXVGU6kbepUoB3CAluYNaNe1vvOmrUHqHkBz7eAOGGYoa-fnRV58LoCWKLUdDTpamAbUhixaqSxsv74mu-xUHs_hiOY5gXVVbybUHlVJHLGUHTjjyX-tFyrDR3w</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Lv, Haoming</creator><creator>Yu, Chengyuan</creator><creator>Liu, Wenyi</creator><creator>Li, Gongsheng</creator><general>International Association of Engineers</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240801</creationdate><title>Numerical Solution and Parameters Identification for the Integer-Fractal MIM Solute Transport Model</title><author>Lv, Haoming ; Yu, Chengyuan ; Liu, Wenyi ; Li, Gongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31067658683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Differential equations</topic><topic>Diffusion</topic><topic>Finite difference method</topic><topic>Fractals</topic><topic>Fractional calculus</topic><topic>Graduate students</topic><topic>Integers</topic><topic>Inverse problems</topic><topic>Inversions</topic><topic>Laplace transforms</topic><topic>Numerical stability</topic><topic>Parameter identification</topic><topic>Porous media</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Haoming</creatorcontrib><creatorcontrib>Yu, Chengyuan</creatorcontrib><creatorcontrib>Liu, Wenyi</creatorcontrib><creatorcontrib>Li, Gongsheng</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>IAENG international journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Haoming</au><au>Yu, Chengyuan</au><au>Liu, Wenyi</au><au>Li, Gongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Solution and Parameters Identification for the Integer-Fractal MIM Solute Transport Model</atitle><jtitle>IAENG international journal of applied mathematics</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>54</volume><issue>8</issue><spage>1545</spage><epage>1552</epage><pages>1545-1552</pages><issn>1992-9978</issn><eissn>1992-9986</eissn><abstract>An integer-fractal mobile-immobile (MIM) model for reactive solute transport in a heterogeneous porous media is investigated, where the transport in the mobile zone is given by an advection-dispersion equation, and the diffusion in the immobile zone is described by a time fractional differential equation. A finite difference scheme is put forward to solve the MIM model, and convergence and stability of the scheme are proved based on the spectrum estimation of the coefficient matrix. An inverse problem of identifying the fractional order and the degradation coefficient is considered with the measured data in the mobile zone, and uniqueness of the inverse problem is proved by the method of Laplace transform. Numerical inversions with noisy data are presented to demonstrate a numerical stability of the inverse problem</abstract><cop>Hong Kong</cop><pub>International Association of Engineers</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1992-9978
ispartof IAENG international journal of applied mathematics, 2024-08, Vol.54 (8), p.1545-1552
issn 1992-9978
1992-9986
language eng
recordid cdi_proquest_journals_3106765868
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adsorption
Differential equations
Diffusion
Finite difference method
Fractals
Fractional calculus
Graduate students
Integers
Inverse problems
Inversions
Laplace transforms
Numerical stability
Parameter identification
Porous media
Stability
title Numerical Solution and Parameters Identification for the Integer-Fractal MIM Solute Transport Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Solution%20and%20Parameters%20Identification%20for%20the%20Integer-Fractal%20MIM%20Solute%20Transport%20Model&rft.jtitle=IAENG%20international%20journal%20of%20applied%20mathematics&rft.au=Lv,%20Haoming&rft.date=2024-08-01&rft.volume=54&rft.issue=8&rft.spage=1545&rft.epage=1552&rft.pages=1545-1552&rft.issn=1992-9978&rft.eissn=1992-9986&rft_id=info:doi/&rft_dat=%3Cproquest%3E3106765868%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106765868&rft_id=info:pmid/&rfr_iscdi=true