Enhancing graph drawings through edge bundling using clustering ensembles

Edge bundling is a technique used to improve the readability of large graph drawings by grouping edges to reduce visual complexity. This paper treats this task as a clustering problem, using compatibility metrics to evaluate solutions in an optimization pipeline combined with a clustering ensemble a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information visualization 2024-10, Vol.23 (4), p.366-383
Hauptverfasser: Vieira, Raissa dos Santos, do Nascimento, Hugo Alexandre Dantas, Ferreira, Joelma de Moura, Foulds, Les
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 383
container_issue 4
container_start_page 366
container_title Information visualization
container_volume 23
creator Vieira, Raissa dos Santos
do Nascimento, Hugo Alexandre Dantas
Ferreira, Joelma de Moura
Foulds, Les
description Edge bundling is a technique used to improve the readability of large graph drawings by grouping edges to reduce visual complexity. This paper treats this task as a clustering problem, using compatibility metrics to evaluate solutions in an optimization pipeline combined with a clustering ensemble approach. The aim is to present the Clustering Ensemble-based Edge Bundling (CEBEB) method for solving the General-based Edge Bundling (GBEB) problem and report results for some given graphs. The CEBEB method proved very promising and generated better solutions than an existing evolutionary algorithm. Additionally, the paper introduces a new ensemble algorithm, specific for the GBEB, and reviews some previous results.
doi_str_mv 10.1177/14738716241239619
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106762546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_14738716241239619</sage_id><sourcerecordid>3106762546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-5da3547ea123744598952bad7b2f374b63affe4259178e93bdfb7946481a5f813</originalsourceid><addsrcrecordid>eNp1UE1Lw0AUXETBWv0B3gKeU_P2M3uUUrVQ8KLnsJu8TVrSJO5mEf-9CRU9iJf3MczMewwht5CtAJS6B65YrkBSDpRpCfqMLGYszRXl5z8zyEtyFcIhy6jimV6Q7aZrTFfuuzqpvRmapPLmY9pCMja-j3WTYFVjYmNXtTMphrmWbQwj-nnELuDRthiuyYUzbcCb774kb4-b1_Vzunt52q4fdmlJJR9TURkmuEIz_ak4FzrXglpTKUvdBFjJjHPIqdCgctTMVs4qzSXPwQiXA1uSu5Pv4Pv3iGEsDn303XSyYJBJJangcmLBiVX6PgSPrhj8_mj8ZwFZMSdW_Els0qxOmmBq_HX9X_AFjflqug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106762546</pqid></control><display><type>article</type><title>Enhancing graph drawings through edge bundling using clustering ensembles</title><source>SAGE Journals</source><creator>Vieira, Raissa dos Santos ; do Nascimento, Hugo Alexandre Dantas ; Ferreira, Joelma de Moura ; Foulds, Les</creator><creatorcontrib>Vieira, Raissa dos Santos ; do Nascimento, Hugo Alexandre Dantas ; Ferreira, Joelma de Moura ; Foulds, Les</creatorcontrib><description>Edge bundling is a technique used to improve the readability of large graph drawings by grouping edges to reduce visual complexity. This paper treats this task as a clustering problem, using compatibility metrics to evaluate solutions in an optimization pipeline combined with a clustering ensemble approach. The aim is to present the Clustering Ensemble-based Edge Bundling (CEBEB) method for solving the General-based Edge Bundling (GBEB) problem and report results for some given graphs. The CEBEB method proved very promising and generated better solutions than an existing evolutionary algorithm. Additionally, the paper introduces a new ensemble algorithm, specific for the GBEB, and reviews some previous results.</description><identifier>ISSN: 1473-8716</identifier><identifier>EISSN: 1473-8724</identifier><identifier>DOI: 10.1177/14738716241239619</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Bundling ; Clustering ; Evolutionary algorithms ; Graph theory ; Machine learning ; Optimization ; Readability ; Visual tasks</subject><ispartof>Information visualization, 2024-10, Vol.23 (4), p.366-383</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-5da3547ea123744598952bad7b2f374b63affe4259178e93bdfb7946481a5f813</cites><orcidid>0000-0003-2865-7963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/14738716241239619$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/14738716241239619$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Vieira, Raissa dos Santos</creatorcontrib><creatorcontrib>do Nascimento, Hugo Alexandre Dantas</creatorcontrib><creatorcontrib>Ferreira, Joelma de Moura</creatorcontrib><creatorcontrib>Foulds, Les</creatorcontrib><title>Enhancing graph drawings through edge bundling using clustering ensembles</title><title>Information visualization</title><description>Edge bundling is a technique used to improve the readability of large graph drawings by grouping edges to reduce visual complexity. This paper treats this task as a clustering problem, using compatibility metrics to evaluate solutions in an optimization pipeline combined with a clustering ensemble approach. The aim is to present the Clustering Ensemble-based Edge Bundling (CEBEB) method for solving the General-based Edge Bundling (GBEB) problem and report results for some given graphs. The CEBEB method proved very promising and generated better solutions than an existing evolutionary algorithm. Additionally, the paper introduces a new ensemble algorithm, specific for the GBEB, and reviews some previous results.</description><subject>Bundling</subject><subject>Clustering</subject><subject>Evolutionary algorithms</subject><subject>Graph theory</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Readability</subject><subject>Visual tasks</subject><issn>1473-8716</issn><issn>1473-8724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Lw0AUXETBWv0B3gKeU_P2M3uUUrVQ8KLnsJu8TVrSJO5mEf-9CRU9iJf3MczMewwht5CtAJS6B65YrkBSDpRpCfqMLGYszRXl5z8zyEtyFcIhy6jimV6Q7aZrTFfuuzqpvRmapPLmY9pCMja-j3WTYFVjYmNXtTMphrmWbQwj-nnELuDRthiuyYUzbcCb774kb4-b1_Vzunt52q4fdmlJJR9TURkmuEIz_ak4FzrXglpTKUvdBFjJjHPIqdCgctTMVs4qzSXPwQiXA1uSu5Pv4Pv3iGEsDn303XSyYJBJJangcmLBiVX6PgSPrhj8_mj8ZwFZMSdW_Els0qxOmmBq_HX9X_AFjflqug</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Vieira, Raissa dos Santos</creator><creator>do Nascimento, Hugo Alexandre Dantas</creator><creator>Ferreira, Joelma de Moura</creator><creator>Foulds, Les</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2865-7963</orcidid></search><sort><creationdate>20241001</creationdate><title>Enhancing graph drawings through edge bundling using clustering ensembles</title><author>Vieira, Raissa dos Santos ; do Nascimento, Hugo Alexandre Dantas ; Ferreira, Joelma de Moura ; Foulds, Les</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-5da3547ea123744598952bad7b2f374b63affe4259178e93bdfb7946481a5f813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bundling</topic><topic>Clustering</topic><topic>Evolutionary algorithms</topic><topic>Graph theory</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Readability</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vieira, Raissa dos Santos</creatorcontrib><creatorcontrib>do Nascimento, Hugo Alexandre Dantas</creatorcontrib><creatorcontrib>Ferreira, Joelma de Moura</creatorcontrib><creatorcontrib>Foulds, Les</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vieira, Raissa dos Santos</au><au>do Nascimento, Hugo Alexandre Dantas</au><au>Ferreira, Joelma de Moura</au><au>Foulds, Les</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing graph drawings through edge bundling using clustering ensembles</atitle><jtitle>Information visualization</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>23</volume><issue>4</issue><spage>366</spage><epage>383</epage><pages>366-383</pages><issn>1473-8716</issn><eissn>1473-8724</eissn><abstract>Edge bundling is a technique used to improve the readability of large graph drawings by grouping edges to reduce visual complexity. This paper treats this task as a clustering problem, using compatibility metrics to evaluate solutions in an optimization pipeline combined with a clustering ensemble approach. The aim is to present the Clustering Ensemble-based Edge Bundling (CEBEB) method for solving the General-based Edge Bundling (GBEB) problem and report results for some given graphs. The CEBEB method proved very promising and generated better solutions than an existing evolutionary algorithm. Additionally, the paper introduces a new ensemble algorithm, specific for the GBEB, and reviews some previous results.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/14738716241239619</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2865-7963</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1473-8716
ispartof Information visualization, 2024-10, Vol.23 (4), p.366-383
issn 1473-8716
1473-8724
language eng
recordid cdi_proquest_journals_3106762546
source SAGE Journals
subjects Bundling
Clustering
Evolutionary algorithms
Graph theory
Machine learning
Optimization
Readability
Visual tasks
title Enhancing graph drawings through edge bundling using clustering ensembles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20graph%20drawings%20through%20edge%20bundling%20using%20clustering%20ensembles&rft.jtitle=Information%20visualization&rft.au=Vieira,%20Raissa%20dos%20Santos&rft.date=2024-10-01&rft.volume=23&rft.issue=4&rft.spage=366&rft.epage=383&rft.pages=366-383&rft.issn=1473-8716&rft.eissn=1473-8724&rft_id=info:doi/10.1177/14738716241239619&rft_dat=%3Cproquest_cross%3E3106762546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106762546&rft_id=info:pmid/&rft_sage_id=10.1177_14738716241239619&rfr_iscdi=true