Enhancing graph drawings through edge bundling using clustering ensembles
Edge bundling is a technique used to improve the readability of large graph drawings by grouping edges to reduce visual complexity. This paper treats this task as a clustering problem, using compatibility metrics to evaluate solutions in an optimization pipeline combined with a clustering ensemble a...
Gespeichert in:
Veröffentlicht in: | Information visualization 2024-10, Vol.23 (4), p.366-383 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 383 |
---|---|
container_issue | 4 |
container_start_page | 366 |
container_title | Information visualization |
container_volume | 23 |
creator | Vieira, Raissa dos Santos do Nascimento, Hugo Alexandre Dantas Ferreira, Joelma de Moura Foulds, Les |
description | Edge bundling is a technique used to improve the readability of large graph drawings by grouping edges to reduce visual complexity. This paper treats this task as a clustering problem, using compatibility metrics to evaluate solutions in an optimization pipeline combined with a clustering ensemble approach. The aim is to present the Clustering Ensemble-based Edge Bundling (CEBEB) method for solving the General-based Edge Bundling (GBEB) problem and report results for some given graphs. The CEBEB method proved very promising and generated better solutions than an existing evolutionary algorithm. Additionally, the paper introduces a new ensemble algorithm, specific for the GBEB, and reviews some previous results. |
doi_str_mv | 10.1177/14738716241239619 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106762546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_14738716241239619</sage_id><sourcerecordid>3106762546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-5da3547ea123744598952bad7b2f374b63affe4259178e93bdfb7946481a5f813</originalsourceid><addsrcrecordid>eNp1UE1Lw0AUXETBWv0B3gKeU_P2M3uUUrVQ8KLnsJu8TVrSJO5mEf-9CRU9iJf3MczMewwht5CtAJS6B65YrkBSDpRpCfqMLGYszRXl5z8zyEtyFcIhy6jimV6Q7aZrTFfuuzqpvRmapPLmY9pCMja-j3WTYFVjYmNXtTMphrmWbQwj-nnELuDRthiuyYUzbcCb774kb4-b1_Vzunt52q4fdmlJJR9TURkmuEIz_ak4FzrXglpTKUvdBFjJjHPIqdCgctTMVs4qzSXPwQiXA1uSu5Pv4Pv3iGEsDn303XSyYJBJJangcmLBiVX6PgSPrhj8_mj8ZwFZMSdW_Els0qxOmmBq_HX9X_AFjflqug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106762546</pqid></control><display><type>article</type><title>Enhancing graph drawings through edge bundling using clustering ensembles</title><source>SAGE Journals</source><creator>Vieira, Raissa dos Santos ; do Nascimento, Hugo Alexandre Dantas ; Ferreira, Joelma de Moura ; Foulds, Les</creator><creatorcontrib>Vieira, Raissa dos Santos ; do Nascimento, Hugo Alexandre Dantas ; Ferreira, Joelma de Moura ; Foulds, Les</creatorcontrib><description>Edge bundling is a technique used to improve the readability of large graph drawings by grouping edges to reduce visual complexity. This paper treats this task as a clustering problem, using compatibility metrics to evaluate solutions in an optimization pipeline combined with a clustering ensemble approach. The aim is to present the Clustering Ensemble-based Edge Bundling (CEBEB) method for solving the General-based Edge Bundling (GBEB) problem and report results for some given graphs. The CEBEB method proved very promising and generated better solutions than an existing evolutionary algorithm. Additionally, the paper introduces a new ensemble algorithm, specific for the GBEB, and reviews some previous results.</description><identifier>ISSN: 1473-8716</identifier><identifier>EISSN: 1473-8724</identifier><identifier>DOI: 10.1177/14738716241239619</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Bundling ; Clustering ; Evolutionary algorithms ; Graph theory ; Machine learning ; Optimization ; Readability ; Visual tasks</subject><ispartof>Information visualization, 2024-10, Vol.23 (4), p.366-383</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-5da3547ea123744598952bad7b2f374b63affe4259178e93bdfb7946481a5f813</cites><orcidid>0000-0003-2865-7963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/14738716241239619$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/14738716241239619$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Vieira, Raissa dos Santos</creatorcontrib><creatorcontrib>do Nascimento, Hugo Alexandre Dantas</creatorcontrib><creatorcontrib>Ferreira, Joelma de Moura</creatorcontrib><creatorcontrib>Foulds, Les</creatorcontrib><title>Enhancing graph drawings through edge bundling using clustering ensembles</title><title>Information visualization</title><description>Edge bundling is a technique used to improve the readability of large graph drawings by grouping edges to reduce visual complexity. This paper treats this task as a clustering problem, using compatibility metrics to evaluate solutions in an optimization pipeline combined with a clustering ensemble approach. The aim is to present the Clustering Ensemble-based Edge Bundling (CEBEB) method for solving the General-based Edge Bundling (GBEB) problem and report results for some given graphs. The CEBEB method proved very promising and generated better solutions than an existing evolutionary algorithm. Additionally, the paper introduces a new ensemble algorithm, specific for the GBEB, and reviews some previous results.</description><subject>Bundling</subject><subject>Clustering</subject><subject>Evolutionary algorithms</subject><subject>Graph theory</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Readability</subject><subject>Visual tasks</subject><issn>1473-8716</issn><issn>1473-8724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Lw0AUXETBWv0B3gKeU_P2M3uUUrVQ8KLnsJu8TVrSJO5mEf-9CRU9iJf3MczMewwht5CtAJS6B65YrkBSDpRpCfqMLGYszRXl5z8zyEtyFcIhy6jimV6Q7aZrTFfuuzqpvRmapPLmY9pCMja-j3WTYFVjYmNXtTMphrmWbQwj-nnELuDRthiuyYUzbcCb774kb4-b1_Vzunt52q4fdmlJJR9TURkmuEIz_ak4FzrXglpTKUvdBFjJjHPIqdCgctTMVs4qzSXPwQiXA1uSu5Pv4Pv3iGEsDn303XSyYJBJJangcmLBiVX6PgSPrhj8_mj8ZwFZMSdW_Els0qxOmmBq_HX9X_AFjflqug</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Vieira, Raissa dos Santos</creator><creator>do Nascimento, Hugo Alexandre Dantas</creator><creator>Ferreira, Joelma de Moura</creator><creator>Foulds, Les</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2865-7963</orcidid></search><sort><creationdate>20241001</creationdate><title>Enhancing graph drawings through edge bundling using clustering ensembles</title><author>Vieira, Raissa dos Santos ; do Nascimento, Hugo Alexandre Dantas ; Ferreira, Joelma de Moura ; Foulds, Les</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-5da3547ea123744598952bad7b2f374b63affe4259178e93bdfb7946481a5f813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bundling</topic><topic>Clustering</topic><topic>Evolutionary algorithms</topic><topic>Graph theory</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Readability</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vieira, Raissa dos Santos</creatorcontrib><creatorcontrib>do Nascimento, Hugo Alexandre Dantas</creatorcontrib><creatorcontrib>Ferreira, Joelma de Moura</creatorcontrib><creatorcontrib>Foulds, Les</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vieira, Raissa dos Santos</au><au>do Nascimento, Hugo Alexandre Dantas</au><au>Ferreira, Joelma de Moura</au><au>Foulds, Les</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing graph drawings through edge bundling using clustering ensembles</atitle><jtitle>Information visualization</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>23</volume><issue>4</issue><spage>366</spage><epage>383</epage><pages>366-383</pages><issn>1473-8716</issn><eissn>1473-8724</eissn><abstract>Edge bundling is a technique used to improve the readability of large graph drawings by grouping edges to reduce visual complexity. This paper treats this task as a clustering problem, using compatibility metrics to evaluate solutions in an optimization pipeline combined with a clustering ensemble approach. The aim is to present the Clustering Ensemble-based Edge Bundling (CEBEB) method for solving the General-based Edge Bundling (GBEB) problem and report results for some given graphs. The CEBEB method proved very promising and generated better solutions than an existing evolutionary algorithm. Additionally, the paper introduces a new ensemble algorithm, specific for the GBEB, and reviews some previous results.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/14738716241239619</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2865-7963</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-8716 |
ispartof | Information visualization, 2024-10, Vol.23 (4), p.366-383 |
issn | 1473-8716 1473-8724 |
language | eng |
recordid | cdi_proquest_journals_3106762546 |
source | SAGE Journals |
subjects | Bundling Clustering Evolutionary algorithms Graph theory Machine learning Optimization Readability Visual tasks |
title | Enhancing graph drawings through edge bundling using clustering ensembles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20graph%20drawings%20through%20edge%20bundling%20using%20clustering%20ensembles&rft.jtitle=Information%20visualization&rft.au=Vieira,%20Raissa%20dos%20Santos&rft.date=2024-10-01&rft.volume=23&rft.issue=4&rft.spage=366&rft.epage=383&rft.pages=366-383&rft.issn=1473-8716&rft.eissn=1473-8724&rft_id=info:doi/10.1177/14738716241239619&rft_dat=%3Cproquest_cross%3E3106762546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106762546&rft_id=info:pmid/&rft_sage_id=10.1177_14738716241239619&rfr_iscdi=true |