On optimal constant weight codes derived from ω-circulant balanced generalized weighing matrices

Balanced generalized weight matrices are used to construct optimal constant weight codes that are monomially inequivalent to codes derived from the classical simplex codes. What’s more, these codes can be assumed to be generated entirely by ω -shifts of a single codeword where ω is a primitive eleme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2024, Vol.92 (10), p.2791-2799
Hauptverfasser: Kharaghani, Hadi, Pender, Thomas, Tonchev, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2799
container_issue 10
container_start_page 2791
container_title Designs, codes, and cryptography
container_volume 92
creator Kharaghani, Hadi
Pender, Thomas
Tonchev, Vladimir
description Balanced generalized weight matrices are used to construct optimal constant weight codes that are monomially inequivalent to codes derived from the classical simplex codes. What’s more, these codes can be assumed to be generated entirely by ω -shifts of a single codeword where ω is a primitive element of a Galois field. Additional constant weight codes are derived by projecting onto subgroups of the alphabet sets. These too are shown to be optimal.
doi_str_mv 10.1007/s10623-024-01414-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106714151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106714151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8bf2e9dd7f436679b72bef03eb543db8f2c05d9800f5a901e8db5452c0690c653</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAVaRWBvGdhwnS1Txkip1A2vLscchVZsUO6WCG3A6roTbILFjNa__n9F8hFwyuGYA6iYyKLigwHMKLGc53R2RCZNKUCXL4phMoOKSMuD8lJzFuAQAJoBPiFl0Wb8Z2rVZZbbv4mC6Idth27wOqXYYM4ehfUeX-dCvs-8vattgt6u9rDYp2DRqsMNgVu1nyg_etmuytRlCazGekxNvVhEvfuOUvNzfPc8e6Xzx8DS7nVPLFQy0rD3Hyjnlc1EUqqoVr9GDwFrmwtWl5xakq0oAL00FDEuXJjJ1iwpsIcWUXI17N6F_22Ic9LLfhi6d1CLRUQmLZEnFR5UNfYwBvd6E9Hz40Az0HqUeUeqEUh9Q6l0yidEUk7hrMPyt_sf1A9DweOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106714151</pqid></control><display><type>article</type><title>On optimal constant weight codes derived from ω-circulant balanced generalized weighing matrices</title><source>Springer Nature - Complete Springer Journals</source><creator>Kharaghani, Hadi ; Pender, Thomas ; Tonchev, Vladimir</creator><creatorcontrib>Kharaghani, Hadi ; Pender, Thomas ; Tonchev, Vladimir</creatorcontrib><description>Balanced generalized weight matrices are used to construct optimal constant weight codes that are monomially inequivalent to codes derived from the classical simplex codes. What’s more, these codes can be assumed to be generated entirely by ω -shifts of a single codeword where ω is a primitive element of a Galois field. Additional constant weight codes are derived by projecting onto subgroups of the alphabet sets. These too are shown to be optimal.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-024-01414-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Coding and Information Theory ; Computer Science ; Cryptology ; Discrete Mathematics in Computer Science ; Subgroups</subject><ispartof>Designs, codes, and cryptography, 2024, Vol.92 (10), p.2791-2799</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8bf2e9dd7f436679b72bef03eb543db8f2c05d9800f5a901e8db5452c0690c653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10623-024-01414-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10623-024-01414-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Kharaghani, Hadi</creatorcontrib><creatorcontrib>Pender, Thomas</creatorcontrib><creatorcontrib>Tonchev, Vladimir</creatorcontrib><title>On optimal constant weight codes derived from ω-circulant balanced generalized weighing matrices</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>Balanced generalized weight matrices are used to construct optimal constant weight codes that are monomially inequivalent to codes derived from the classical simplex codes. What’s more, these codes can be assumed to be generated entirely by ω -shifts of a single codeword where ω is a primitive element of a Galois field. Additional constant weight codes are derived by projecting onto subgroups of the alphabet sets. These too are shown to be optimal.</description><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Subgroups</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAVaRWBvGdhwnS1Txkip1A2vLscchVZsUO6WCG3A6roTbILFjNa__n9F8hFwyuGYA6iYyKLigwHMKLGc53R2RCZNKUCXL4phMoOKSMuD8lJzFuAQAJoBPiFl0Wb8Z2rVZZbbv4mC6Idth27wOqXYYM4ehfUeX-dCvs-8vattgt6u9rDYp2DRqsMNgVu1nyg_etmuytRlCazGekxNvVhEvfuOUvNzfPc8e6Xzx8DS7nVPLFQy0rD3Hyjnlc1EUqqoVr9GDwFrmwtWl5xakq0oAL00FDEuXJjJ1iwpsIcWUXI17N6F_22Ic9LLfhi6d1CLRUQmLZEnFR5UNfYwBvd6E9Hz40Az0HqUeUeqEUh9Q6l0yidEUk7hrMPyt_sf1A9DweOM</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kharaghani, Hadi</creator><creator>Pender, Thomas</creator><creator>Tonchev, Vladimir</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>On optimal constant weight codes derived from ω-circulant balanced generalized weighing matrices</title><author>Kharaghani, Hadi ; Pender, Thomas ; Tonchev, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8bf2e9dd7f436679b72bef03eb543db8f2c05d9800f5a901e8db5452c0690c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kharaghani, Hadi</creatorcontrib><creatorcontrib>Pender, Thomas</creatorcontrib><creatorcontrib>Tonchev, Vladimir</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kharaghani, Hadi</au><au>Pender, Thomas</au><au>Tonchev, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On optimal constant weight codes derived from ω-circulant balanced generalized weighing matrices</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2024</date><risdate>2024</risdate><volume>92</volume><issue>10</issue><spage>2791</spage><epage>2799</epage><pages>2791-2799</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>Balanced generalized weight matrices are used to construct optimal constant weight codes that are monomially inequivalent to codes derived from the classical simplex codes. What’s more, these codes can be assumed to be generated entirely by ω -shifts of a single codeword where ω is a primitive element of a Galois field. Additional constant weight codes are derived by projecting onto subgroups of the alphabet sets. These too are shown to be optimal.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-024-01414-w</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2024, Vol.92 (10), p.2791-2799
issn 0925-1022
1573-7586
language eng
recordid cdi_proquest_journals_3106714151
source Springer Nature - Complete Springer Journals
subjects Coding and Information Theory
Computer Science
Cryptology
Discrete Mathematics in Computer Science
Subgroups
title On optimal constant weight codes derived from ω-circulant balanced generalized weighing matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20optimal%20constant%20weight%20codes%20derived%20from%20%CF%89-circulant%20balanced%20generalized%20weighing%20matrices&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Kharaghani,%20Hadi&rft.date=2024&rft.volume=92&rft.issue=10&rft.spage=2791&rft.epage=2799&rft.pages=2791-2799&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-024-01414-w&rft_dat=%3Cproquest_cross%3E3106714151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106714151&rft_id=info:pmid/&rfr_iscdi=true