On optimal constant weight codes derived from ω-circulant balanced generalized weighing matrices
Balanced generalized weight matrices are used to construct optimal constant weight codes that are monomially inequivalent to codes derived from the classical simplex codes. What’s more, these codes can be assumed to be generated entirely by ω -shifts of a single codeword where ω is a primitive eleme...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2024, Vol.92 (10), p.2791-2799 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2799 |
---|---|
container_issue | 10 |
container_start_page | 2791 |
container_title | Designs, codes, and cryptography |
container_volume | 92 |
creator | Kharaghani, Hadi Pender, Thomas Tonchev, Vladimir |
description | Balanced generalized weight matrices are used to construct optimal constant weight codes that are monomially inequivalent to codes derived from the classical simplex codes. What’s more, these codes can be assumed to be generated entirely by
ω
-shifts of a single codeword where
ω
is a primitive element of a Galois field. Additional constant weight codes are derived by projecting onto subgroups of the alphabet sets. These too are shown to be optimal. |
doi_str_mv | 10.1007/s10623-024-01414-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106714151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106714151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8bf2e9dd7f436679b72bef03eb543db8f2c05d9800f5a901e8db5452c0690c653</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAVaRWBvGdhwnS1Txkip1A2vLscchVZsUO6WCG3A6roTbILFjNa__n9F8hFwyuGYA6iYyKLigwHMKLGc53R2RCZNKUCXL4phMoOKSMuD8lJzFuAQAJoBPiFl0Wb8Z2rVZZbbv4mC6Idth27wOqXYYM4ehfUeX-dCvs-8vattgt6u9rDYp2DRqsMNgVu1nyg_etmuytRlCazGekxNvVhEvfuOUvNzfPc8e6Xzx8DS7nVPLFQy0rD3Hyjnlc1EUqqoVr9GDwFrmwtWl5xakq0oAL00FDEuXJjJ1iwpsIcWUXI17N6F_22Ic9LLfhi6d1CLRUQmLZEnFR5UNfYwBvd6E9Hz40Az0HqUeUeqEUh9Q6l0yidEUk7hrMPyt_sf1A9DweOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106714151</pqid></control><display><type>article</type><title>On optimal constant weight codes derived from ω-circulant balanced generalized weighing matrices</title><source>Springer Nature - Complete Springer Journals</source><creator>Kharaghani, Hadi ; Pender, Thomas ; Tonchev, Vladimir</creator><creatorcontrib>Kharaghani, Hadi ; Pender, Thomas ; Tonchev, Vladimir</creatorcontrib><description>Balanced generalized weight matrices are used to construct optimal constant weight codes that are monomially inequivalent to codes derived from the classical simplex codes. What’s more, these codes can be assumed to be generated entirely by
ω
-shifts of a single codeword where
ω
is a primitive element of a Galois field. Additional constant weight codes are derived by projecting onto subgroups of the alphabet sets. These too are shown to be optimal.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-024-01414-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Coding and Information Theory ; Computer Science ; Cryptology ; Discrete Mathematics in Computer Science ; Subgroups</subject><ispartof>Designs, codes, and cryptography, 2024, Vol.92 (10), p.2791-2799</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8bf2e9dd7f436679b72bef03eb543db8f2c05d9800f5a901e8db5452c0690c653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10623-024-01414-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10623-024-01414-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Kharaghani, Hadi</creatorcontrib><creatorcontrib>Pender, Thomas</creatorcontrib><creatorcontrib>Tonchev, Vladimir</creatorcontrib><title>On optimal constant weight codes derived from ω-circulant balanced generalized weighing matrices</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>Balanced generalized weight matrices are used to construct optimal constant weight codes that are monomially inequivalent to codes derived from the classical simplex codes. What’s more, these codes can be assumed to be generated entirely by
ω
-shifts of a single codeword where
ω
is a primitive element of a Galois field. Additional constant weight codes are derived by projecting onto subgroups of the alphabet sets. These too are shown to be optimal.</description><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Subgroups</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAVaRWBvGdhwnS1Txkip1A2vLscchVZsUO6WCG3A6roTbILFjNa__n9F8hFwyuGYA6iYyKLigwHMKLGc53R2RCZNKUCXL4phMoOKSMuD8lJzFuAQAJoBPiFl0Wb8Z2rVZZbbv4mC6Idth27wOqXYYM4ehfUeX-dCvs-8vattgt6u9rDYp2DRqsMNgVu1nyg_etmuytRlCazGekxNvVhEvfuOUvNzfPc8e6Xzx8DS7nVPLFQy0rD3Hyjnlc1EUqqoVr9GDwFrmwtWl5xakq0oAL00FDEuXJjJ1iwpsIcWUXI17N6F_22Ic9LLfhi6d1CLRUQmLZEnFR5UNfYwBvd6E9Hz40Az0HqUeUeqEUh9Q6l0yidEUk7hrMPyt_sf1A9DweOM</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kharaghani, Hadi</creator><creator>Pender, Thomas</creator><creator>Tonchev, Vladimir</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>On optimal constant weight codes derived from ω-circulant balanced generalized weighing matrices</title><author>Kharaghani, Hadi ; Pender, Thomas ; Tonchev, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8bf2e9dd7f436679b72bef03eb543db8f2c05d9800f5a901e8db5452c0690c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kharaghani, Hadi</creatorcontrib><creatorcontrib>Pender, Thomas</creatorcontrib><creatorcontrib>Tonchev, Vladimir</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kharaghani, Hadi</au><au>Pender, Thomas</au><au>Tonchev, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On optimal constant weight codes derived from ω-circulant balanced generalized weighing matrices</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2024</date><risdate>2024</risdate><volume>92</volume><issue>10</issue><spage>2791</spage><epage>2799</epage><pages>2791-2799</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>Balanced generalized weight matrices are used to construct optimal constant weight codes that are monomially inequivalent to codes derived from the classical simplex codes. What’s more, these codes can be assumed to be generated entirely by
ω
-shifts of a single codeword where
ω
is a primitive element of a Galois field. Additional constant weight codes are derived by projecting onto subgroups of the alphabet sets. These too are shown to be optimal.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-024-01414-w</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-1022 |
ispartof | Designs, codes, and cryptography, 2024, Vol.92 (10), p.2791-2799 |
issn | 0925-1022 1573-7586 |
language | eng |
recordid | cdi_proquest_journals_3106714151 |
source | Springer Nature - Complete Springer Journals |
subjects | Coding and Information Theory Computer Science Cryptology Discrete Mathematics in Computer Science Subgroups |
title | On optimal constant weight codes derived from ω-circulant balanced generalized weighing matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20optimal%20constant%20weight%20codes%20derived%20from%20%CF%89-circulant%20balanced%20generalized%20weighing%20matrices&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Kharaghani,%20Hadi&rft.date=2024&rft.volume=92&rft.issue=10&rft.spage=2791&rft.epage=2799&rft.pages=2791-2799&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-024-01414-w&rft_dat=%3Cproquest_cross%3E3106714151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106714151&rft_id=info:pmid/&rfr_iscdi=true |