Enhanced predictive modeling of Nusselt number in boiler tubes: numerical simulations and machine learning for water and SiO2/water
This research investigates the complex phenomenon of nanofluid flow boiling and its associated heat transfer characteristics. Employing advanced numerical simulations and machine learning techniques, we explore the behavior of dimensionless heat transfer correlations in subcooled flow boiling scenar...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2024-09, Vol.149 (17), p.10119-10148 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10148 |
---|---|
container_issue | 17 |
container_start_page | 10119 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 149 |
creator | Eskandari, Erfan Alimoradi, Hasan Pourbagian, Mahdi Shams, Mehrzad |
description | This research investigates the complex phenomenon of nanofluid flow boiling and its associated heat transfer characteristics. Employing advanced numerical simulations and machine learning techniques, we explore the behavior of dimensionless heat transfer correlations in subcooled flow boiling scenarios using water and SiO
2
/water nanofluids. The study begins with an adaptive design of experiment, yielding a comprehensive dataset of nearly 250 simulations. In the numerical simulation phase, the extracted data are examined, and the grid independence of the modeling process is confirmed, ensuring robustness and reliability. The data, validated against experimental results, provides critical insights into the intricate interplay of dimensionless numbers influencing Nusselt number behavior. Subsequently, the extracted dataset from the numerical simulations underwent a two-stage feature selection process, incorporating Pearson correlation and iterative techniques, to identify the most influential dimensionless parameters for the calculation of the Nusselt number. Later, the data are randomly split into training and testing sets (70–30%), and predictive models are developed using Python, leveraging libraries such as Pandas, NumPy, scikit-learn, and Keras. A tenfold cross-validation approach is employed to ensure model stability and accuracy. Through response surface methodology (RSM), we establish regression equations for average and local Nusselt numbers, achieving minimal mean absolute error (MAE) and high
R
-squared (
R
2
) values, demonstrating the effectiveness of our approach. Further enhancing predictive capabilities, we explore random forest, support vector machine, and artificial neural network (ANN) models. The ANN model emerges as the top performer, offering exceptional accuracy with MAE below 2.21% and
R
2
above 0.95 for both average and local Nusselt numbers. Notably, the machine learning algorithms, from data preprocessing to the final model evaluation, required only about 10% of the time invested in the numerical simulations. |
doi_str_mv | 10.1007/s10973-024-13409-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106714125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106714125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-82a923239626f2c7764831e6efbb3290ca47b23fe20db1e9f538ba8bd0b9a61b3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwBzhZ4hy6tvMyN1Txkip6AM6WnWxaV4lT7ATEmT-O0yBx47Sz9sys9EXRJYVrCpAvPAWR8xhYElOegIjFUTSjaVHETLDsOGgedEZTOI3OvN8BgBBAZ9H3nd0qW2JF9g4rU_bmA0nbVdgYuyFdTZ4H77HpiR1ajY4YS3RnmqD6QaO_Gd_RmVI1xJt2aFRvOuuJshVpVbk1FkmDytmxre4c-VR9yI7fL2bNFof1PDqpVePx4nfOo7f7u9flY7xaPzwtb1dxyQD6uGBKMM64yFhWszLPs6TgFDOsteZMQKmSXDNeI4NKUxR1ygutCl2BFiqjms-jq6l377r3AX0vd93gbDgpOYUspwllaXCxyVW6znuHtdw70yr3JSnIEbacYMsAWx5gSxFCfAr5YLYbdH_V_6R-ANkKg9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106714125</pqid></control><display><type>article</type><title>Enhanced predictive modeling of Nusselt number in boiler tubes: numerical simulations and machine learning for water and SiO2/water</title><source>Springer Nature - Complete Springer Journals</source><creator>Eskandari, Erfan ; Alimoradi, Hasan ; Pourbagian, Mahdi ; Shams, Mehrzad</creator><creatorcontrib>Eskandari, Erfan ; Alimoradi, Hasan ; Pourbagian, Mahdi ; Shams, Mehrzad</creatorcontrib><description>This research investigates the complex phenomenon of nanofluid flow boiling and its associated heat transfer characteristics. Employing advanced numerical simulations and machine learning techniques, we explore the behavior of dimensionless heat transfer correlations in subcooled flow boiling scenarios using water and SiO
2
/water nanofluids. The study begins with an adaptive design of experiment, yielding a comprehensive dataset of nearly 250 simulations. In the numerical simulation phase, the extracted data are examined, and the grid independence of the modeling process is confirmed, ensuring robustness and reliability. The data, validated against experimental results, provides critical insights into the intricate interplay of dimensionless numbers influencing Nusselt number behavior. Subsequently, the extracted dataset from the numerical simulations underwent a two-stage feature selection process, incorporating Pearson correlation and iterative techniques, to identify the most influential dimensionless parameters for the calculation of the Nusselt number. Later, the data are randomly split into training and testing sets (70–30%), and predictive models are developed using Python, leveraging libraries such as Pandas, NumPy, scikit-learn, and Keras. A tenfold cross-validation approach is employed to ensure model stability and accuracy. Through response surface methodology (RSM), we establish regression equations for average and local Nusselt numbers, achieving minimal mean absolute error (MAE) and high
R
-squared (
R
2
) values, demonstrating the effectiveness of our approach. Further enhancing predictive capabilities, we explore random forest, support vector machine, and artificial neural network (ANN) models. The ANN model emerges as the top performer, offering exceptional accuracy with MAE below 2.21% and
R
2
above 0.95 for both average and local Nusselt numbers. Notably, the machine learning algorithms, from data preprocessing to the final model evaluation, required only about 10% of the time invested in the numerical simulations.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-024-13409-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accuracy ; Algorithms ; Analytical Chemistry ; Artificial neural networks ; Boiler tubes ; Boiling ; Chemistry ; Chemistry and Materials Science ; Computer simulation ; Datasets ; Design of experiments ; Dimensionless numbers ; Fluid flow ; Heat transfer ; Inorganic Chemistry ; Machine learning ; Measurement Science and Instrumentation ; Nanofluids ; Nusselt number ; Parameter identification ; Physical Chemistry ; Polymer Sciences ; Prediction models ; Regression models ; Response surface methodology ; Silicon dioxide ; Simulation ; Support vector machines ; Surface stability</subject><ispartof>Journal of thermal analysis and calorimetry, 2024-09, Vol.149 (17), p.10119-10148</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-82a923239626f2c7764831e6efbb3290ca47b23fe20db1e9f538ba8bd0b9a61b3</cites><orcidid>0000-0002-6923-445X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-024-13409-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-024-13409-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Eskandari, Erfan</creatorcontrib><creatorcontrib>Alimoradi, Hasan</creatorcontrib><creatorcontrib>Pourbagian, Mahdi</creatorcontrib><creatorcontrib>Shams, Mehrzad</creatorcontrib><title>Enhanced predictive modeling of Nusselt number in boiler tubes: numerical simulations and machine learning for water and SiO2/water</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>This research investigates the complex phenomenon of nanofluid flow boiling and its associated heat transfer characteristics. Employing advanced numerical simulations and machine learning techniques, we explore the behavior of dimensionless heat transfer correlations in subcooled flow boiling scenarios using water and SiO
2
/water nanofluids. The study begins with an adaptive design of experiment, yielding a comprehensive dataset of nearly 250 simulations. In the numerical simulation phase, the extracted data are examined, and the grid independence of the modeling process is confirmed, ensuring robustness and reliability. The data, validated against experimental results, provides critical insights into the intricate interplay of dimensionless numbers influencing Nusselt number behavior. Subsequently, the extracted dataset from the numerical simulations underwent a two-stage feature selection process, incorporating Pearson correlation and iterative techniques, to identify the most influential dimensionless parameters for the calculation of the Nusselt number. Later, the data are randomly split into training and testing sets (70–30%), and predictive models are developed using Python, leveraging libraries such as Pandas, NumPy, scikit-learn, and Keras. A tenfold cross-validation approach is employed to ensure model stability and accuracy. Through response surface methodology (RSM), we establish regression equations for average and local Nusselt numbers, achieving minimal mean absolute error (MAE) and high
R
-squared (
R
2
) values, demonstrating the effectiveness of our approach. Further enhancing predictive capabilities, we explore random forest, support vector machine, and artificial neural network (ANN) models. The ANN model emerges as the top performer, offering exceptional accuracy with MAE below 2.21% and
R
2
above 0.95 for both average and local Nusselt numbers. Notably, the machine learning algorithms, from data preprocessing to the final model evaluation, required only about 10% of the time invested in the numerical simulations.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analytical Chemistry</subject><subject>Artificial neural networks</subject><subject>Boiler tubes</subject><subject>Boiling</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Datasets</subject><subject>Design of experiments</subject><subject>Dimensionless numbers</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Inorganic Chemistry</subject><subject>Machine learning</subject><subject>Measurement Science and Instrumentation</subject><subject>Nanofluids</subject><subject>Nusselt number</subject><subject>Parameter identification</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Prediction models</subject><subject>Regression models</subject><subject>Response surface methodology</subject><subject>Silicon dioxide</subject><subject>Simulation</subject><subject>Support vector machines</subject><subject>Surface stability</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEqXwBzhZ4hy6tvMyN1Txkip6AM6WnWxaV4lT7ATEmT-O0yBx47Sz9sys9EXRJYVrCpAvPAWR8xhYElOegIjFUTSjaVHETLDsOGgedEZTOI3OvN8BgBBAZ9H3nd0qW2JF9g4rU_bmA0nbVdgYuyFdTZ4H77HpiR1ajY4YS3RnmqD6QaO_Gd_RmVI1xJt2aFRvOuuJshVpVbk1FkmDytmxre4c-VR9yI7fL2bNFof1PDqpVePx4nfOo7f7u9flY7xaPzwtb1dxyQD6uGBKMM64yFhWszLPs6TgFDOsteZMQKmSXDNeI4NKUxR1ygutCl2BFiqjms-jq6l377r3AX0vd93gbDgpOYUspwllaXCxyVW6znuHtdw70yr3JSnIEbacYMsAWx5gSxFCfAr5YLYbdH_V_6R-ANkKg9I</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Eskandari, Erfan</creator><creator>Alimoradi, Hasan</creator><creator>Pourbagian, Mahdi</creator><creator>Shams, Mehrzad</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6923-445X</orcidid></search><sort><creationdate>20240901</creationdate><title>Enhanced predictive modeling of Nusselt number in boiler tubes: numerical simulations and machine learning for water and SiO2/water</title><author>Eskandari, Erfan ; Alimoradi, Hasan ; Pourbagian, Mahdi ; Shams, Mehrzad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-82a923239626f2c7764831e6efbb3290ca47b23fe20db1e9f538ba8bd0b9a61b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analytical Chemistry</topic><topic>Artificial neural networks</topic><topic>Boiler tubes</topic><topic>Boiling</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Datasets</topic><topic>Design of experiments</topic><topic>Dimensionless numbers</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Inorganic Chemistry</topic><topic>Machine learning</topic><topic>Measurement Science and Instrumentation</topic><topic>Nanofluids</topic><topic>Nusselt number</topic><topic>Parameter identification</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Prediction models</topic><topic>Regression models</topic><topic>Response surface methodology</topic><topic>Silicon dioxide</topic><topic>Simulation</topic><topic>Support vector machines</topic><topic>Surface stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eskandari, Erfan</creatorcontrib><creatorcontrib>Alimoradi, Hasan</creatorcontrib><creatorcontrib>Pourbagian, Mahdi</creatorcontrib><creatorcontrib>Shams, Mehrzad</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eskandari, Erfan</au><au>Alimoradi, Hasan</au><au>Pourbagian, Mahdi</au><au>Shams, Mehrzad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced predictive modeling of Nusselt number in boiler tubes: numerical simulations and machine learning for water and SiO2/water</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>149</volume><issue>17</issue><spage>10119</spage><epage>10148</epage><pages>10119-10148</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>This research investigates the complex phenomenon of nanofluid flow boiling and its associated heat transfer characteristics. Employing advanced numerical simulations and machine learning techniques, we explore the behavior of dimensionless heat transfer correlations in subcooled flow boiling scenarios using water and SiO
2
/water nanofluids. The study begins with an adaptive design of experiment, yielding a comprehensive dataset of nearly 250 simulations. In the numerical simulation phase, the extracted data are examined, and the grid independence of the modeling process is confirmed, ensuring robustness and reliability. The data, validated against experimental results, provides critical insights into the intricate interplay of dimensionless numbers influencing Nusselt number behavior. Subsequently, the extracted dataset from the numerical simulations underwent a two-stage feature selection process, incorporating Pearson correlation and iterative techniques, to identify the most influential dimensionless parameters for the calculation of the Nusselt number. Later, the data are randomly split into training and testing sets (70–30%), and predictive models are developed using Python, leveraging libraries such as Pandas, NumPy, scikit-learn, and Keras. A tenfold cross-validation approach is employed to ensure model stability and accuracy. Through response surface methodology (RSM), we establish regression equations for average and local Nusselt numbers, achieving minimal mean absolute error (MAE) and high
R
-squared (
R
2
) values, demonstrating the effectiveness of our approach. Further enhancing predictive capabilities, we explore random forest, support vector machine, and artificial neural network (ANN) models. The ANN model emerges as the top performer, offering exceptional accuracy with MAE below 2.21% and
R
2
above 0.95 for both average and local Nusselt numbers. Notably, the machine learning algorithms, from data preprocessing to the final model evaluation, required only about 10% of the time invested in the numerical simulations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-024-13409-9</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-6923-445X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2024-09, Vol.149 (17), p.10119-10148 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_3106714125 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Algorithms Analytical Chemistry Artificial neural networks Boiler tubes Boiling Chemistry Chemistry and Materials Science Computer simulation Datasets Design of experiments Dimensionless numbers Fluid flow Heat transfer Inorganic Chemistry Machine learning Measurement Science and Instrumentation Nanofluids Nusselt number Parameter identification Physical Chemistry Polymer Sciences Prediction models Regression models Response surface methodology Silicon dioxide Simulation Support vector machines Surface stability |
title | Enhanced predictive modeling of Nusselt number in boiler tubes: numerical simulations and machine learning for water and SiO2/water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A38%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20predictive%20modeling%20of%20Nusselt%20number%20in%20boiler%20tubes:%20numerical%20simulations%20and%20machine%20learning%20for%20water%20and%20SiO2/water&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Eskandari,%20Erfan&rft.date=2024-09-01&rft.volume=149&rft.issue=17&rft.spage=10119&rft.epage=10148&rft.pages=10119-10148&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-024-13409-9&rft_dat=%3Cproquest_cross%3E3106714125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106714125&rft_id=info:pmid/&rfr_iscdi=true |