Enhanced predictive modeling of Nusselt number in boiler tubes: numerical simulations and machine learning for water and SiO2/water

This research investigates the complex phenomenon of nanofluid flow boiling and its associated heat transfer characteristics. Employing advanced numerical simulations and machine learning techniques, we explore the behavior of dimensionless heat transfer correlations in subcooled flow boiling scenar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2024-09, Vol.149 (17), p.10119-10148
Hauptverfasser: Eskandari, Erfan, Alimoradi, Hasan, Pourbagian, Mahdi, Shams, Mehrzad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10148
container_issue 17
container_start_page 10119
container_title Journal of thermal analysis and calorimetry
container_volume 149
creator Eskandari, Erfan
Alimoradi, Hasan
Pourbagian, Mahdi
Shams, Mehrzad
description This research investigates the complex phenomenon of nanofluid flow boiling and its associated heat transfer characteristics. Employing advanced numerical simulations and machine learning techniques, we explore the behavior of dimensionless heat transfer correlations in subcooled flow boiling scenarios using water and SiO 2 /water nanofluids. The study begins with an adaptive design of experiment, yielding a comprehensive dataset of nearly 250 simulations. In the numerical simulation phase, the extracted data are examined, and the grid independence of the modeling process is confirmed, ensuring robustness and reliability. The data, validated against experimental results, provides critical insights into the intricate interplay of dimensionless numbers influencing Nusselt number behavior. Subsequently, the extracted dataset from the numerical simulations underwent a two-stage feature selection process, incorporating Pearson correlation and iterative techniques, to identify the most influential dimensionless parameters for the calculation of the Nusselt number. Later, the data are randomly split into training and testing sets (70–30%), and predictive models are developed using Python, leveraging libraries such as Pandas, NumPy, scikit-learn, and Keras. A tenfold cross-validation approach is employed to ensure model stability and accuracy. Through response surface methodology (RSM), we establish regression equations for average and local Nusselt numbers, achieving minimal mean absolute error (MAE) and high R -squared ( R 2 ) values, demonstrating the effectiveness of our approach. Further enhancing predictive capabilities, we explore random forest, support vector machine, and artificial neural network (ANN) models. The ANN model emerges as the top performer, offering exceptional accuracy with MAE below 2.21% and R 2 above 0.95 for both average and local Nusselt numbers. Notably, the machine learning algorithms, from data preprocessing to the final model evaluation, required only about 10% of the time invested in the numerical simulations.
doi_str_mv 10.1007/s10973-024-13409-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106714125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106714125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-82a923239626f2c7764831e6efbb3290ca47b23fe20db1e9f538ba8bd0b9a61b3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwBzhZ4hy6tvMyN1Txkip6AM6WnWxaV4lT7ATEmT-O0yBx47Sz9sys9EXRJYVrCpAvPAWR8xhYElOegIjFUTSjaVHETLDsOGgedEZTOI3OvN8BgBBAZ9H3nd0qW2JF9g4rU_bmA0nbVdgYuyFdTZ4H77HpiR1ajY4YS3RnmqD6QaO_Gd_RmVI1xJt2aFRvOuuJshVpVbk1FkmDytmxre4c-VR9yI7fL2bNFof1PDqpVePx4nfOo7f7u9flY7xaPzwtb1dxyQD6uGBKMM64yFhWszLPs6TgFDOsteZMQKmSXDNeI4NKUxR1ygutCl2BFiqjms-jq6l377r3AX0vd93gbDgpOYUspwllaXCxyVW6znuHtdw70yr3JSnIEbacYMsAWx5gSxFCfAr5YLYbdH_V_6R-ANkKg9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106714125</pqid></control><display><type>article</type><title>Enhanced predictive modeling of Nusselt number in boiler tubes: numerical simulations and machine learning for water and SiO2/water</title><source>Springer Nature - Complete Springer Journals</source><creator>Eskandari, Erfan ; Alimoradi, Hasan ; Pourbagian, Mahdi ; Shams, Mehrzad</creator><creatorcontrib>Eskandari, Erfan ; Alimoradi, Hasan ; Pourbagian, Mahdi ; Shams, Mehrzad</creatorcontrib><description>This research investigates the complex phenomenon of nanofluid flow boiling and its associated heat transfer characteristics. Employing advanced numerical simulations and machine learning techniques, we explore the behavior of dimensionless heat transfer correlations in subcooled flow boiling scenarios using water and SiO 2 /water nanofluids. The study begins with an adaptive design of experiment, yielding a comprehensive dataset of nearly 250 simulations. In the numerical simulation phase, the extracted data are examined, and the grid independence of the modeling process is confirmed, ensuring robustness and reliability. The data, validated against experimental results, provides critical insights into the intricate interplay of dimensionless numbers influencing Nusselt number behavior. Subsequently, the extracted dataset from the numerical simulations underwent a two-stage feature selection process, incorporating Pearson correlation and iterative techniques, to identify the most influential dimensionless parameters for the calculation of the Nusselt number. Later, the data are randomly split into training and testing sets (70–30%), and predictive models are developed using Python, leveraging libraries such as Pandas, NumPy, scikit-learn, and Keras. A tenfold cross-validation approach is employed to ensure model stability and accuracy. Through response surface methodology (RSM), we establish regression equations for average and local Nusselt numbers, achieving minimal mean absolute error (MAE) and high R -squared ( R 2 ) values, demonstrating the effectiveness of our approach. Further enhancing predictive capabilities, we explore random forest, support vector machine, and artificial neural network (ANN) models. The ANN model emerges as the top performer, offering exceptional accuracy with MAE below 2.21% and R 2 above 0.95 for both average and local Nusselt numbers. Notably, the machine learning algorithms, from data preprocessing to the final model evaluation, required only about 10% of the time invested in the numerical simulations.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-024-13409-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accuracy ; Algorithms ; Analytical Chemistry ; Artificial neural networks ; Boiler tubes ; Boiling ; Chemistry ; Chemistry and Materials Science ; Computer simulation ; Datasets ; Design of experiments ; Dimensionless numbers ; Fluid flow ; Heat transfer ; Inorganic Chemistry ; Machine learning ; Measurement Science and Instrumentation ; Nanofluids ; Nusselt number ; Parameter identification ; Physical Chemistry ; Polymer Sciences ; Prediction models ; Regression models ; Response surface methodology ; Silicon dioxide ; Simulation ; Support vector machines ; Surface stability</subject><ispartof>Journal of thermal analysis and calorimetry, 2024-09, Vol.149 (17), p.10119-10148</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-82a923239626f2c7764831e6efbb3290ca47b23fe20db1e9f538ba8bd0b9a61b3</cites><orcidid>0000-0002-6923-445X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-024-13409-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-024-13409-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Eskandari, Erfan</creatorcontrib><creatorcontrib>Alimoradi, Hasan</creatorcontrib><creatorcontrib>Pourbagian, Mahdi</creatorcontrib><creatorcontrib>Shams, Mehrzad</creatorcontrib><title>Enhanced predictive modeling of Nusselt number in boiler tubes: numerical simulations and machine learning for water and SiO2/water</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>This research investigates the complex phenomenon of nanofluid flow boiling and its associated heat transfer characteristics. Employing advanced numerical simulations and machine learning techniques, we explore the behavior of dimensionless heat transfer correlations in subcooled flow boiling scenarios using water and SiO 2 /water nanofluids. The study begins with an adaptive design of experiment, yielding a comprehensive dataset of nearly 250 simulations. In the numerical simulation phase, the extracted data are examined, and the grid independence of the modeling process is confirmed, ensuring robustness and reliability. The data, validated against experimental results, provides critical insights into the intricate interplay of dimensionless numbers influencing Nusselt number behavior. Subsequently, the extracted dataset from the numerical simulations underwent a two-stage feature selection process, incorporating Pearson correlation and iterative techniques, to identify the most influential dimensionless parameters for the calculation of the Nusselt number. Later, the data are randomly split into training and testing sets (70–30%), and predictive models are developed using Python, leveraging libraries such as Pandas, NumPy, scikit-learn, and Keras. A tenfold cross-validation approach is employed to ensure model stability and accuracy. Through response surface methodology (RSM), we establish regression equations for average and local Nusselt numbers, achieving minimal mean absolute error (MAE) and high R -squared ( R 2 ) values, demonstrating the effectiveness of our approach. Further enhancing predictive capabilities, we explore random forest, support vector machine, and artificial neural network (ANN) models. The ANN model emerges as the top performer, offering exceptional accuracy with MAE below 2.21% and R 2 above 0.95 for both average and local Nusselt numbers. Notably, the machine learning algorithms, from data preprocessing to the final model evaluation, required only about 10% of the time invested in the numerical simulations.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analytical Chemistry</subject><subject>Artificial neural networks</subject><subject>Boiler tubes</subject><subject>Boiling</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Datasets</subject><subject>Design of experiments</subject><subject>Dimensionless numbers</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Inorganic Chemistry</subject><subject>Machine learning</subject><subject>Measurement Science and Instrumentation</subject><subject>Nanofluids</subject><subject>Nusselt number</subject><subject>Parameter identification</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Prediction models</subject><subject>Regression models</subject><subject>Response surface methodology</subject><subject>Silicon dioxide</subject><subject>Simulation</subject><subject>Support vector machines</subject><subject>Surface stability</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEqXwBzhZ4hy6tvMyN1Txkip6AM6WnWxaV4lT7ATEmT-O0yBx47Sz9sys9EXRJYVrCpAvPAWR8xhYElOegIjFUTSjaVHETLDsOGgedEZTOI3OvN8BgBBAZ9H3nd0qW2JF9g4rU_bmA0nbVdgYuyFdTZ4H77HpiR1ajY4YS3RnmqD6QaO_Gd_RmVI1xJt2aFRvOuuJshVpVbk1FkmDytmxre4c-VR9yI7fL2bNFof1PDqpVePx4nfOo7f7u9flY7xaPzwtb1dxyQD6uGBKMM64yFhWszLPs6TgFDOsteZMQKmSXDNeI4NKUxR1ygutCl2BFiqjms-jq6l377r3AX0vd93gbDgpOYUspwllaXCxyVW6znuHtdw70yr3JSnIEbacYMsAWx5gSxFCfAr5YLYbdH_V_6R-ANkKg9I</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Eskandari, Erfan</creator><creator>Alimoradi, Hasan</creator><creator>Pourbagian, Mahdi</creator><creator>Shams, Mehrzad</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6923-445X</orcidid></search><sort><creationdate>20240901</creationdate><title>Enhanced predictive modeling of Nusselt number in boiler tubes: numerical simulations and machine learning for water and SiO2/water</title><author>Eskandari, Erfan ; Alimoradi, Hasan ; Pourbagian, Mahdi ; Shams, Mehrzad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-82a923239626f2c7764831e6efbb3290ca47b23fe20db1e9f538ba8bd0b9a61b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analytical Chemistry</topic><topic>Artificial neural networks</topic><topic>Boiler tubes</topic><topic>Boiling</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Datasets</topic><topic>Design of experiments</topic><topic>Dimensionless numbers</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Inorganic Chemistry</topic><topic>Machine learning</topic><topic>Measurement Science and Instrumentation</topic><topic>Nanofluids</topic><topic>Nusselt number</topic><topic>Parameter identification</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Prediction models</topic><topic>Regression models</topic><topic>Response surface methodology</topic><topic>Silicon dioxide</topic><topic>Simulation</topic><topic>Support vector machines</topic><topic>Surface stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eskandari, Erfan</creatorcontrib><creatorcontrib>Alimoradi, Hasan</creatorcontrib><creatorcontrib>Pourbagian, Mahdi</creatorcontrib><creatorcontrib>Shams, Mehrzad</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eskandari, Erfan</au><au>Alimoradi, Hasan</au><au>Pourbagian, Mahdi</au><au>Shams, Mehrzad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced predictive modeling of Nusselt number in boiler tubes: numerical simulations and machine learning for water and SiO2/water</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>149</volume><issue>17</issue><spage>10119</spage><epage>10148</epage><pages>10119-10148</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>This research investigates the complex phenomenon of nanofluid flow boiling and its associated heat transfer characteristics. Employing advanced numerical simulations and machine learning techniques, we explore the behavior of dimensionless heat transfer correlations in subcooled flow boiling scenarios using water and SiO 2 /water nanofluids. The study begins with an adaptive design of experiment, yielding a comprehensive dataset of nearly 250 simulations. In the numerical simulation phase, the extracted data are examined, and the grid independence of the modeling process is confirmed, ensuring robustness and reliability. The data, validated against experimental results, provides critical insights into the intricate interplay of dimensionless numbers influencing Nusselt number behavior. Subsequently, the extracted dataset from the numerical simulations underwent a two-stage feature selection process, incorporating Pearson correlation and iterative techniques, to identify the most influential dimensionless parameters for the calculation of the Nusselt number. Later, the data are randomly split into training and testing sets (70–30%), and predictive models are developed using Python, leveraging libraries such as Pandas, NumPy, scikit-learn, and Keras. A tenfold cross-validation approach is employed to ensure model stability and accuracy. Through response surface methodology (RSM), we establish regression equations for average and local Nusselt numbers, achieving minimal mean absolute error (MAE) and high R -squared ( R 2 ) values, demonstrating the effectiveness of our approach. Further enhancing predictive capabilities, we explore random forest, support vector machine, and artificial neural network (ANN) models. The ANN model emerges as the top performer, offering exceptional accuracy with MAE below 2.21% and R 2 above 0.95 for both average and local Nusselt numbers. Notably, the machine learning algorithms, from data preprocessing to the final model evaluation, required only about 10% of the time invested in the numerical simulations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-024-13409-9</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-6923-445X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2024-09, Vol.149 (17), p.10119-10148
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_3106714125
source Springer Nature - Complete Springer Journals
subjects Accuracy
Algorithms
Analytical Chemistry
Artificial neural networks
Boiler tubes
Boiling
Chemistry
Chemistry and Materials Science
Computer simulation
Datasets
Design of experiments
Dimensionless numbers
Fluid flow
Heat transfer
Inorganic Chemistry
Machine learning
Measurement Science and Instrumentation
Nanofluids
Nusselt number
Parameter identification
Physical Chemistry
Polymer Sciences
Prediction models
Regression models
Response surface methodology
Silicon dioxide
Simulation
Support vector machines
Surface stability
title Enhanced predictive modeling of Nusselt number in boiler tubes: numerical simulations and machine learning for water and SiO2/water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A38%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20predictive%20modeling%20of%20Nusselt%20number%20in%20boiler%20tubes:%20numerical%20simulations%20and%20machine%20learning%20for%20water%20and%20SiO2/water&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Eskandari,%20Erfan&rft.date=2024-09-01&rft.volume=149&rft.issue=17&rft.spage=10119&rft.epage=10148&rft.pages=10119-10148&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-024-13409-9&rft_dat=%3Cproquest_cross%3E3106714125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106714125&rft_id=info:pmid/&rfr_iscdi=true