Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning

Large language models (LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning (ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM's performance....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Lin, Yukang, Zhong, Bingchen, Jiang, Shuoran, Siebert, Joanna, Chen, Qingcai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lin, Yukang
Zhong, Bingchen
Jiang, Shuoran
Siebert, Joanna
Chen, Qingcai
description Large language models (LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning (ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM's performance. Existing exemplar selection methods mainly focus on the semantic similarity between queries and candidate exemplars. On the other hand, the logical connections between reasoning steps can be beneficial to depict the problem-solving process as well. In this paper, we proposes a novel method named Reasoning Graph-enhanced Exemplar Retrieval (RGER). RGER first quires LLM to generate an initial response, then expresses intermediate problem-solving steps to a graph structure. After that, it employs graph kernel to select exemplars with semantic and structural similarity. Extensive experiments demonstrate the structural relationship is helpful to the alignment of queries and candidate exemplars. The efficacy of RGER on math and logit reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches. Our code is released at https://github.com/Yukang-Lin/RGER.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3106537543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106537543</sourcerecordid><originalsourceid>FETCH-proquest_journals_31065375433</originalsourceid><addsrcrecordid>eNqNi8sKgkAUQIcgSMp_GGgtjDOOtjd7QCtpLxe7pmJ3bGYMP7-CPqDVWZxzFiyQSsXRLpFyxULneiGETDOptQrYvkRwhjq686OFseUFtUA13ngx42McwDpeorcdvmDgjbH8TFFuyOPs-QXBftcNWzYwOAx_XLPtobjmp2i05jmh81VvJksfValYpFplOlHqv-oNGdQ6QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106537543</pqid></control><display><type>article</type><title>Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning</title><source>Free E- Journals</source><creator>Lin, Yukang ; Zhong, Bingchen ; Jiang, Shuoran ; Siebert, Joanna ; Chen, Qingcai</creator><creatorcontrib>Lin, Yukang ; Zhong, Bingchen ; Jiang, Shuoran ; Siebert, Joanna ; Chen, Qingcai</creatorcontrib><description>Large language models (LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning (ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM's performance. Existing exemplar selection methods mainly focus on the semantic similarity between queries and candidate exemplars. On the other hand, the logical connections between reasoning steps can be beneficial to depict the problem-solving process as well. In this paper, we proposes a novel method named Reasoning Graph-enhanced Exemplar Retrieval (RGER). RGER first quires LLM to generate an initial response, then expresses intermediate problem-solving steps to a graph structure. After that, it employs graph kernel to select exemplars with semantic and structural similarity. Extensive experiments demonstrate the structural relationship is helpful to the alignment of queries and candidate exemplars. The efficacy of RGER on math and logit reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches. Our code is released at https://github.com/Yukang-Lin/RGER.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Context ; Large language models ; Problem solving ; Query processing ; Reasoning ; Retrieval ; Semantics ; Similarity</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lin, Yukang</creatorcontrib><creatorcontrib>Zhong, Bingchen</creatorcontrib><creatorcontrib>Jiang, Shuoran</creatorcontrib><creatorcontrib>Siebert, Joanna</creatorcontrib><creatorcontrib>Chen, Qingcai</creatorcontrib><title>Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning</title><title>arXiv.org</title><description>Large language models (LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning (ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM's performance. Existing exemplar selection methods mainly focus on the semantic similarity between queries and candidate exemplars. On the other hand, the logical connections between reasoning steps can be beneficial to depict the problem-solving process as well. In this paper, we proposes a novel method named Reasoning Graph-enhanced Exemplar Retrieval (RGER). RGER first quires LLM to generate an initial response, then expresses intermediate problem-solving steps to a graph structure. After that, it employs graph kernel to select exemplars with semantic and structural similarity. Extensive experiments demonstrate the structural relationship is helpful to the alignment of queries and candidate exemplars. The efficacy of RGER on math and logit reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches. Our code is released at https://github.com/Yukang-Lin/RGER.</description><subject>Context</subject><subject>Large language models</subject><subject>Problem solving</subject><subject>Query processing</subject><subject>Reasoning</subject><subject>Retrieval</subject><subject>Semantics</subject><subject>Similarity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKgkAUQIcgSMp_GGgtjDOOtjd7QCtpLxe7pmJ3bGYMP7-CPqDVWZxzFiyQSsXRLpFyxULneiGETDOptQrYvkRwhjq686OFseUFtUA13ngx42McwDpeorcdvmDgjbH8TFFuyOPs-QXBftcNWzYwOAx_XLPtobjmp2i05jmh81VvJksfValYpFplOlHqv-oNGdQ6QA</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Lin, Yukang</creator><creator>Zhong, Bingchen</creator><creator>Jiang, Shuoran</creator><creator>Siebert, Joanna</creator><creator>Chen, Qingcai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241212</creationdate><title>Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning</title><author>Lin, Yukang ; Zhong, Bingchen ; Jiang, Shuoran ; Siebert, Joanna ; Chen, Qingcai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31065375433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Context</topic><topic>Large language models</topic><topic>Problem solving</topic><topic>Query processing</topic><topic>Reasoning</topic><topic>Retrieval</topic><topic>Semantics</topic><topic>Similarity</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yukang</creatorcontrib><creatorcontrib>Zhong, Bingchen</creatorcontrib><creatorcontrib>Jiang, Shuoran</creatorcontrib><creatorcontrib>Siebert, Joanna</creatorcontrib><creatorcontrib>Chen, Qingcai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yukang</au><au>Zhong, Bingchen</au><au>Jiang, Shuoran</au><au>Siebert, Joanna</au><au>Chen, Qingcai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-12-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Large language models (LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning (ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM's performance. Existing exemplar selection methods mainly focus on the semantic similarity between queries and candidate exemplars. On the other hand, the logical connections between reasoning steps can be beneficial to depict the problem-solving process as well. In this paper, we proposes a novel method named Reasoning Graph-enhanced Exemplar Retrieval (RGER). RGER first quires LLM to generate an initial response, then expresses intermediate problem-solving steps to a graph structure. After that, it employs graph kernel to select exemplars with semantic and structural similarity. Extensive experiments demonstrate the structural relationship is helpful to the alignment of queries and candidate exemplars. The efficacy of RGER on math and logit reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches. Our code is released at https://github.com/Yukang-Lin/RGER.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3106537543
source Free E- Journals
subjects Context
Large language models
Problem solving
Query processing
Reasoning
Retrieval
Semantics
Similarity
title Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Reasoning%20Graph%20Enhanced%20Exemplars%20Retrieval%20for%20In-Context%20Learning&rft.jtitle=arXiv.org&rft.au=Lin,%20Yukang&rft.date=2024-12-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3106537543%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106537543&rft_id=info:pmid/&rfr_iscdi=true