Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning
Large language models (LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning (ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM's performance....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lin, Yukang Zhong, Bingchen Jiang, Shuoran Siebert, Joanna Chen, Qingcai |
description | Large language models (LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning (ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM's performance. Existing exemplar selection methods mainly focus on the semantic similarity between queries and candidate exemplars. On the other hand, the logical connections between reasoning steps can be beneficial to depict the problem-solving process as well. In this paper, we proposes a novel method named Reasoning Graph-enhanced Exemplar Retrieval (RGER). RGER first quires LLM to generate an initial response, then expresses intermediate problem-solving steps to a graph structure. After that, it employs graph kernel to select exemplars with semantic and structural similarity. Extensive experiments demonstrate the structural relationship is helpful to the alignment of queries and candidate exemplars. The efficacy of RGER on math and logit reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches. Our code is released at https://github.com/Yukang-Lin/RGER. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3106537543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106537543</sourcerecordid><originalsourceid>FETCH-proquest_journals_31065375433</originalsourceid><addsrcrecordid>eNqNi8sKgkAUQIcgSMp_GGgtjDOOtjd7QCtpLxe7pmJ3bGYMP7-CPqDVWZxzFiyQSsXRLpFyxULneiGETDOptQrYvkRwhjq686OFseUFtUA13ngx42McwDpeorcdvmDgjbH8TFFuyOPs-QXBftcNWzYwOAx_XLPtobjmp2i05jmh81VvJksfValYpFplOlHqv-oNGdQ6QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106537543</pqid></control><display><type>article</type><title>Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning</title><source>Free E- Journals</source><creator>Lin, Yukang ; Zhong, Bingchen ; Jiang, Shuoran ; Siebert, Joanna ; Chen, Qingcai</creator><creatorcontrib>Lin, Yukang ; Zhong, Bingchen ; Jiang, Shuoran ; Siebert, Joanna ; Chen, Qingcai</creatorcontrib><description>Large language models (LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning (ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM's performance. Existing exemplar selection methods mainly focus on the semantic similarity between queries and candidate exemplars. On the other hand, the logical connections between reasoning steps can be beneficial to depict the problem-solving process as well. In this paper, we proposes a novel method named Reasoning Graph-enhanced Exemplar Retrieval (RGER). RGER first quires LLM to generate an initial response, then expresses intermediate problem-solving steps to a graph structure. After that, it employs graph kernel to select exemplars with semantic and structural similarity. Extensive experiments demonstrate the structural relationship is helpful to the alignment of queries and candidate exemplars. The efficacy of RGER on math and logit reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches. Our code is released at https://github.com/Yukang-Lin/RGER.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Context ; Large language models ; Problem solving ; Query processing ; Reasoning ; Retrieval ; Semantics ; Similarity</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lin, Yukang</creatorcontrib><creatorcontrib>Zhong, Bingchen</creatorcontrib><creatorcontrib>Jiang, Shuoran</creatorcontrib><creatorcontrib>Siebert, Joanna</creatorcontrib><creatorcontrib>Chen, Qingcai</creatorcontrib><title>Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning</title><title>arXiv.org</title><description>Large language models (LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning (ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM's performance. Existing exemplar selection methods mainly focus on the semantic similarity between queries and candidate exemplars. On the other hand, the logical connections between reasoning steps can be beneficial to depict the problem-solving process as well. In this paper, we proposes a novel method named Reasoning Graph-enhanced Exemplar Retrieval (RGER). RGER first quires LLM to generate an initial response, then expresses intermediate problem-solving steps to a graph structure. After that, it employs graph kernel to select exemplars with semantic and structural similarity. Extensive experiments demonstrate the structural relationship is helpful to the alignment of queries and candidate exemplars. The efficacy of RGER on math and logit reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches. Our code is released at https://github.com/Yukang-Lin/RGER.</description><subject>Context</subject><subject>Large language models</subject><subject>Problem solving</subject><subject>Query processing</subject><subject>Reasoning</subject><subject>Retrieval</subject><subject>Semantics</subject><subject>Similarity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKgkAUQIcgSMp_GGgtjDOOtjd7QCtpLxe7pmJ3bGYMP7-CPqDVWZxzFiyQSsXRLpFyxULneiGETDOptQrYvkRwhjq686OFseUFtUA13ngx42McwDpeorcdvmDgjbH8TFFuyOPs-QXBftcNWzYwOAx_XLPtobjmp2i05jmh81VvJksfValYpFplOlHqv-oNGdQ6QA</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Lin, Yukang</creator><creator>Zhong, Bingchen</creator><creator>Jiang, Shuoran</creator><creator>Siebert, Joanna</creator><creator>Chen, Qingcai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241212</creationdate><title>Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning</title><author>Lin, Yukang ; Zhong, Bingchen ; Jiang, Shuoran ; Siebert, Joanna ; Chen, Qingcai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31065375433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Context</topic><topic>Large language models</topic><topic>Problem solving</topic><topic>Query processing</topic><topic>Reasoning</topic><topic>Retrieval</topic><topic>Semantics</topic><topic>Similarity</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yukang</creatorcontrib><creatorcontrib>Zhong, Bingchen</creatorcontrib><creatorcontrib>Jiang, Shuoran</creatorcontrib><creatorcontrib>Siebert, Joanna</creatorcontrib><creatorcontrib>Chen, Qingcai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yukang</au><au>Zhong, Bingchen</au><au>Jiang, Shuoran</au><au>Siebert, Joanna</au><au>Chen, Qingcai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-12-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Large language models (LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning (ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM's performance. Existing exemplar selection methods mainly focus on the semantic similarity between queries and candidate exemplars. On the other hand, the logical connections between reasoning steps can be beneficial to depict the problem-solving process as well. In this paper, we proposes a novel method named Reasoning Graph-enhanced Exemplar Retrieval (RGER). RGER first quires LLM to generate an initial response, then expresses intermediate problem-solving steps to a graph structure. After that, it employs graph kernel to select exemplars with semantic and structural similarity. Extensive experiments demonstrate the structural relationship is helpful to the alignment of queries and candidate exemplars. The efficacy of RGER on math and logit reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches. Our code is released at https://github.com/Yukang-Lin/RGER.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3106537543 |
source | Free E- Journals |
subjects | Context Large language models Problem solving Query processing Reasoning Retrieval Semantics Similarity |
title | Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Reasoning%20Graph%20Enhanced%20Exemplars%20Retrieval%20for%20In-Context%20Learning&rft.jtitle=arXiv.org&rft.au=Lin,%20Yukang&rft.date=2024-12-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3106537543%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106537543&rft_id=info:pmid/&rfr_iscdi=true |