TacDiffusion: Force-domain Diffusion Policy for Precise Tactile Manipulation

Assembly is a crucial skill for robots in both modern manufacturing and service robotics. However, mastering transferable insertion skills that can handle a variety of high-precision assembly tasks remains a significant challenge. This paper presents a novel framework that utilizes diffusion models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Wu, Yansong, Chen, Zongxie, Wu, Fan, Chen, Lingyun, Zhang, Liding, Zhenshan Bing, Abdalla Swikir, Knoll, Alois, Haddadin, Sami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wu, Yansong
Chen, Zongxie
Wu, Fan
Chen, Lingyun
Zhang, Liding
Zhenshan Bing
Abdalla Swikir
Knoll, Alois
Haddadin, Sami
description Assembly is a crucial skill for robots in both modern manufacturing and service robotics. However, mastering transferable insertion skills that can handle a variety of high-precision assembly tasks remains a significant challenge. This paper presents a novel framework that utilizes diffusion models to generate 6D wrench for high-precision tactile robotic insertion tasks. It learns from demonstrations performed on a single task and achieves a zero-shot transfer success rate of 95.7% across various novel high-precision tasks. Our method effectively inherits the self-adaptability demonstrated by our previous work. In this framework, we address the frequency misalignment between the diffusion policy and the real-time control loop with a dynamic system-based filter, significantly improving the task success rate by 9.15%. Furthermore, we provide a practical guideline regarding the trade-off between diffusion models' inference ability and speed.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3106536861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106536861</sourcerecordid><originalsourceid>FETCH-proquest_journals_31065368613</originalsourceid><addsrcrecordid>eNqNi7EKwjAURYMgWLT_EHAupEkbi6taHBQ6dC8hJvBKzKtJM_j3dhBnpwvnnLsiGReiLJqK8w3JYxwZY1weeF2LjNx6pc9gbYqA_khbDNoUD3wq8PTHaYcO9JtaDLQLRkM0dPnN4Ay9Kw9Tcmpeuh1ZW-Wiyb-7Jfv20p-uxRTwlUychxFT8IsaRMlkLWQjS_Ff9QE8_z1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106536861</pqid></control><display><type>article</type><title>TacDiffusion: Force-domain Diffusion Policy for Precise Tactile Manipulation</title><source>Free E- Journals</source><creator>Wu, Yansong ; Chen, Zongxie ; Wu, Fan ; Chen, Lingyun ; Zhang, Liding ; Zhenshan Bing ; Abdalla Swikir ; Knoll, Alois ; Haddadin, Sami</creator><creatorcontrib>Wu, Yansong ; Chen, Zongxie ; Wu, Fan ; Chen, Lingyun ; Zhang, Liding ; Zhenshan Bing ; Abdalla Swikir ; Knoll, Alois ; Haddadin, Sami</creatorcontrib><description>Assembly is a crucial skill for robots in both modern manufacturing and service robotics. However, mastering transferable insertion skills that can handle a variety of high-precision assembly tasks remains a significant challenge. This paper presents a novel framework that utilizes diffusion models to generate 6D wrench for high-precision tactile robotic insertion tasks. It learns from demonstrations performed on a single task and achieves a zero-shot transfer success rate of 95.7% across various novel high-precision tasks. Our method effectively inherits the self-adaptability demonstrated by our previous work. In this framework, we address the frequency misalignment between the diffusion policy and the real-time control loop with a dynamic system-based filter, significantly improving the task success rate by 9.15%. Furthermore, we provide a practical guideline regarding the trade-off between diffusion models' inference ability and speed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Assembly ; Automation ; Diffusion rate ; Industrial robots ; Insertion ; Misalignment ; Real time ; Robotics</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Wu, Yansong</creatorcontrib><creatorcontrib>Chen, Zongxie</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Chen, Lingyun</creatorcontrib><creatorcontrib>Zhang, Liding</creatorcontrib><creatorcontrib>Zhenshan Bing</creatorcontrib><creatorcontrib>Abdalla Swikir</creatorcontrib><creatorcontrib>Knoll, Alois</creatorcontrib><creatorcontrib>Haddadin, Sami</creatorcontrib><title>TacDiffusion: Force-domain Diffusion Policy for Precise Tactile Manipulation</title><title>arXiv.org</title><description>Assembly is a crucial skill for robots in both modern manufacturing and service robotics. However, mastering transferable insertion skills that can handle a variety of high-precision assembly tasks remains a significant challenge. This paper presents a novel framework that utilizes diffusion models to generate 6D wrench for high-precision tactile robotic insertion tasks. It learns from demonstrations performed on a single task and achieves a zero-shot transfer success rate of 95.7% across various novel high-precision tasks. Our method effectively inherits the self-adaptability demonstrated by our previous work. In this framework, we address the frequency misalignment between the diffusion policy and the real-time control loop with a dynamic system-based filter, significantly improving the task success rate by 9.15%. Furthermore, we provide a practical guideline regarding the trade-off between diffusion models' inference ability and speed.</description><subject>Assembly</subject><subject>Automation</subject><subject>Diffusion rate</subject><subject>Industrial robots</subject><subject>Insertion</subject><subject>Misalignment</subject><subject>Real time</subject><subject>Robotics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi7EKwjAURYMgWLT_EHAupEkbi6taHBQ6dC8hJvBKzKtJM_j3dhBnpwvnnLsiGReiLJqK8w3JYxwZY1weeF2LjNx6pc9gbYqA_khbDNoUD3wq8PTHaYcO9JtaDLQLRkM0dPnN4Ay9Kw9Tcmpeuh1ZW-Wiyb-7Jfv20p-uxRTwlUychxFT8IsaRMlkLWQjS_Ff9QE8_z1s</recordid><startdate>20240917</startdate><enddate>20240917</enddate><creator>Wu, Yansong</creator><creator>Chen, Zongxie</creator><creator>Wu, Fan</creator><creator>Chen, Lingyun</creator><creator>Zhang, Liding</creator><creator>Zhenshan Bing</creator><creator>Abdalla Swikir</creator><creator>Knoll, Alois</creator><creator>Haddadin, Sami</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240917</creationdate><title>TacDiffusion: Force-domain Diffusion Policy for Precise Tactile Manipulation</title><author>Wu, Yansong ; Chen, Zongxie ; Wu, Fan ; Chen, Lingyun ; Zhang, Liding ; Zhenshan Bing ; Abdalla Swikir ; Knoll, Alois ; Haddadin, Sami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31065368613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assembly</topic><topic>Automation</topic><topic>Diffusion rate</topic><topic>Industrial robots</topic><topic>Insertion</topic><topic>Misalignment</topic><topic>Real time</topic><topic>Robotics</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yansong</creatorcontrib><creatorcontrib>Chen, Zongxie</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Chen, Lingyun</creatorcontrib><creatorcontrib>Zhang, Liding</creatorcontrib><creatorcontrib>Zhenshan Bing</creatorcontrib><creatorcontrib>Abdalla Swikir</creatorcontrib><creatorcontrib>Knoll, Alois</creatorcontrib><creatorcontrib>Haddadin, Sami</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yansong</au><au>Chen, Zongxie</au><au>Wu, Fan</au><au>Chen, Lingyun</au><au>Zhang, Liding</au><au>Zhenshan Bing</au><au>Abdalla Swikir</au><au>Knoll, Alois</au><au>Haddadin, Sami</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TacDiffusion: Force-domain Diffusion Policy for Precise Tactile Manipulation</atitle><jtitle>arXiv.org</jtitle><date>2024-09-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Assembly is a crucial skill for robots in both modern manufacturing and service robotics. However, mastering transferable insertion skills that can handle a variety of high-precision assembly tasks remains a significant challenge. This paper presents a novel framework that utilizes diffusion models to generate 6D wrench for high-precision tactile robotic insertion tasks. It learns from demonstrations performed on a single task and achieves a zero-shot transfer success rate of 95.7% across various novel high-precision tasks. Our method effectively inherits the self-adaptability demonstrated by our previous work. In this framework, we address the frequency misalignment between the diffusion policy and the real-time control loop with a dynamic system-based filter, significantly improving the task success rate by 9.15%. Furthermore, we provide a practical guideline regarding the trade-off between diffusion models' inference ability and speed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3106536861
source Free E- Journals
subjects Assembly
Automation
Diffusion rate
Industrial robots
Insertion
Misalignment
Real time
Robotics
title TacDiffusion: Force-domain Diffusion Policy for Precise Tactile Manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A10%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TacDiffusion:%20Force-domain%20Diffusion%20Policy%20for%20Precise%20Tactile%20Manipulation&rft.jtitle=arXiv.org&rft.au=Wu,%20Yansong&rft.date=2024-09-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3106536861%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106536861&rft_id=info:pmid/&rfr_iscdi=true