HEFANet: hierarchical efficient fusion and aggregation segmentation network for enhanced rgb-thermal urban scene parsing

RGB-Thermal semantic segmentation is important in widespread applications in adverse illumination conditions, such as autonomous driving and robotic sensing. However, most existing methods ignore the feature differences between the two modalities and do not effectively exploit and handle the feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2024-11, Vol.54 (22), p.11248-11266
Hauptverfasser: Shen, Zhengwen, Pan, Zaiyu, Weng, Yuchen, Li, Yulian, Wang, Jiangyu, Wang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11266
container_issue 22
container_start_page 11248
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 54
creator Shen, Zhengwen
Pan, Zaiyu
Weng, Yuchen
Li, Yulian
Wang, Jiangyu
Wang, Jun
description RGB-Thermal semantic segmentation is important in widespread applications in adverse illumination conditions, such as autonomous driving and robotic sensing. However, most existing methods ignore the feature differences between the two modalities and do not effectively exploit and handle the features at different levels. In this paper, we present a novel multimodal feature fusion network named HEFANet, which effectively enhances the interaction and fusion of features. Concretely, we propose a Cross-layer and Cross-modal Feature Descriptor module (CCFD) to mitigate differences between different multimodal data and to mine the valuable and correlated features of cross-layers. To effectively fuse multimodal features at different levels, we propose a Multi-modal Interleaved Sparse Self-Attention module (MISSA) to aggregate rich spatial semantic information in the earlier layers. Then, we propose the Spatial Interaction and Channel Selection module (SICS) in the last layer to enhance the representation of rich contextual features and highlight important information by channel communication interactions for optimal sparse feature aggregation selectively. Extensive experiments were carried out on three publicly available datasets (MFNet, PST900, and FMB), and achieved new state-of-the-art results. The code and results are available at https://github.com/shenzw21/HEFANet .
doi_str_mv 10.1007/s10489-024-05743-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106536726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106536726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-dafa5a45e2f41f6ef09d3de66a0a003e473af498591028e342c2ba4e4e415b893</originalsourceid><addsrcrecordid>eNp9UE1Lw0AQXUTB-vEHPC14js5mN0njrZTWCkUvCt6WSTKbpLabupug_nu3RvAmcxge72OYx9iVgBsBkN16AWqaRxCrCJJMyQiO2EQkmYwylWfHbAJ5oNI0fz1lZ95vAEBKEBP2uVosZ4_U3_GmJYeubNoSt5yMacuWbM_N4NvOcrQVx7p2VGN_wJ7qXaBHYKn_6NwbN53jZBu0JVXc1UXUN-R2IW5wBQZPSZb4Hp1vbX3BTgxuPV3-7nP2slw8z1fR-un-YT5bR2UM0EcVGkxQJRQbJUxKBvJKVpSmCBh-IJVJNCqfJrmAeEpSxWVcoKIwIimmuTxn12Pu3nXvA_leb7rB2XBSSwFpItMsToMqHlWl67x3ZPTetTt0X1qAPjSsx4Z1aFj_NKwhmORo8kFsa3J_0f-4vgHvkoBV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106536726</pqid></control><display><type>article</type><title>HEFANet: hierarchical efficient fusion and aggregation segmentation network for enhanced rgb-thermal urban scene parsing</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shen, Zhengwen ; Pan, Zaiyu ; Weng, Yuchen ; Li, Yulian ; Wang, Jiangyu ; Wang, Jun</creator><creatorcontrib>Shen, Zhengwen ; Pan, Zaiyu ; Weng, Yuchen ; Li, Yulian ; Wang, Jiangyu ; Wang, Jun</creatorcontrib><description>RGB-Thermal semantic segmentation is important in widespread applications in adverse illumination conditions, such as autonomous driving and robotic sensing. However, most existing methods ignore the feature differences between the two modalities and do not effectively exploit and handle the features at different levels. In this paper, we present a novel multimodal feature fusion network named HEFANet, which effectively enhances the interaction and fusion of features. Concretely, we propose a Cross-layer and Cross-modal Feature Descriptor module (CCFD) to mitigate differences between different multimodal data and to mine the valuable and correlated features of cross-layers. To effectively fuse multimodal features at different levels, we propose a Multi-modal Interleaved Sparse Self-Attention module (MISSA) to aggregate rich spatial semantic information in the earlier layers. Then, we propose the Spatial Interaction and Channel Selection module (SICS) in the last layer to enhance the representation of rich contextual features and highlight important information by channel communication interactions for optimal sparse feature aggregation selectively. Extensive experiments were carried out on three publicly available datasets (MFNet, PST900, and FMB), and achieved new state-of-the-art results. The code and results are available at https://github.com/shenzw21/HEFANet .</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-024-05743-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Machines ; Manufacturing ; Mechanical Engineering ; Modules ; Processes ; Robot sensors ; Semantic segmentation ; Semantics</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2024-11, Vol.54 (22), p.11248-11266</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-dafa5a45e2f41f6ef09d3de66a0a003e473af498591028e342c2ba4e4e415b893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-024-05743-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-024-05743-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Shen, Zhengwen</creatorcontrib><creatorcontrib>Pan, Zaiyu</creatorcontrib><creatorcontrib>Weng, Yuchen</creatorcontrib><creatorcontrib>Li, Yulian</creatorcontrib><creatorcontrib>Wang, Jiangyu</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><title>HEFANet: hierarchical efficient fusion and aggregation segmentation network for enhanced rgb-thermal urban scene parsing</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>RGB-Thermal semantic segmentation is important in widespread applications in adverse illumination conditions, such as autonomous driving and robotic sensing. However, most existing methods ignore the feature differences between the two modalities and do not effectively exploit and handle the features at different levels. In this paper, we present a novel multimodal feature fusion network named HEFANet, which effectively enhances the interaction and fusion of features. Concretely, we propose a Cross-layer and Cross-modal Feature Descriptor module (CCFD) to mitigate differences between different multimodal data and to mine the valuable and correlated features of cross-layers. To effectively fuse multimodal features at different levels, we propose a Multi-modal Interleaved Sparse Self-Attention module (MISSA) to aggregate rich spatial semantic information in the earlier layers. Then, we propose the Spatial Interaction and Channel Selection module (SICS) in the last layer to enhance the representation of rich contextual features and highlight important information by channel communication interactions for optimal sparse feature aggregation selectively. Extensive experiments were carried out on three publicly available datasets (MFNet, PST900, and FMB), and achieved new state-of-the-art results. The code and results are available at https://github.com/shenzw21/HEFANet .</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Modules</subject><subject>Processes</subject><subject>Robot sensors</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Lw0AQXUTB-vEHPC14js5mN0njrZTWCkUvCt6WSTKbpLabupug_nu3RvAmcxge72OYx9iVgBsBkN16AWqaRxCrCJJMyQiO2EQkmYwylWfHbAJ5oNI0fz1lZ95vAEBKEBP2uVosZ4_U3_GmJYeubNoSt5yMacuWbM_N4NvOcrQVx7p2VGN_wJ7qXaBHYKn_6NwbN53jZBu0JVXc1UXUN-R2IW5wBQZPSZb4Hp1vbX3BTgxuPV3-7nP2slw8z1fR-un-YT5bR2UM0EcVGkxQJRQbJUxKBvJKVpSmCBh-IJVJNCqfJrmAeEpSxWVcoKIwIimmuTxn12Pu3nXvA_leb7rB2XBSSwFpItMsToMqHlWl67x3ZPTetTt0X1qAPjSsx4Z1aFj_NKwhmORo8kFsa3J_0f-4vgHvkoBV</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Shen, Zhengwen</creator><creator>Pan, Zaiyu</creator><creator>Weng, Yuchen</creator><creator>Li, Yulian</creator><creator>Wang, Jiangyu</creator><creator>Wang, Jun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20241101</creationdate><title>HEFANet: hierarchical efficient fusion and aggregation segmentation network for enhanced rgb-thermal urban scene parsing</title><author>Shen, Zhengwen ; Pan, Zaiyu ; Weng, Yuchen ; Li, Yulian ; Wang, Jiangyu ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-dafa5a45e2f41f6ef09d3de66a0a003e473af498591028e342c2ba4e4e415b893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Modules</topic><topic>Processes</topic><topic>Robot sensors</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Zhengwen</creatorcontrib><creatorcontrib>Pan, Zaiyu</creatorcontrib><creatorcontrib>Weng, Yuchen</creatorcontrib><creatorcontrib>Li, Yulian</creatorcontrib><creatorcontrib>Wang, Jiangyu</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Zhengwen</au><au>Pan, Zaiyu</au><au>Weng, Yuchen</au><au>Li, Yulian</au><au>Wang, Jiangyu</au><au>Wang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HEFANet: hierarchical efficient fusion and aggregation segmentation network for enhanced rgb-thermal urban scene parsing</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>54</volume><issue>22</issue><spage>11248</spage><epage>11266</epage><pages>11248-11266</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>RGB-Thermal semantic segmentation is important in widespread applications in adverse illumination conditions, such as autonomous driving and robotic sensing. However, most existing methods ignore the feature differences between the two modalities and do not effectively exploit and handle the features at different levels. In this paper, we present a novel multimodal feature fusion network named HEFANet, which effectively enhances the interaction and fusion of features. Concretely, we propose a Cross-layer and Cross-modal Feature Descriptor module (CCFD) to mitigate differences between different multimodal data and to mine the valuable and correlated features of cross-layers. To effectively fuse multimodal features at different levels, we propose a Multi-modal Interleaved Sparse Self-Attention module (MISSA) to aggregate rich spatial semantic information in the earlier layers. Then, we propose the Spatial Interaction and Channel Selection module (SICS) in the last layer to enhance the representation of rich contextual features and highlight important information by channel communication interactions for optimal sparse feature aggregation selectively. Extensive experiments were carried out on three publicly available datasets (MFNet, PST900, and FMB), and achieved new state-of-the-art results. The code and results are available at https://github.com/shenzw21/HEFANet .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-024-05743-0</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2024-11, Vol.54 (22), p.11248-11266
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_3106536726
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computer Science
Machines
Manufacturing
Mechanical Engineering
Modules
Processes
Robot sensors
Semantic segmentation
Semantics
title HEFANet: hierarchical efficient fusion and aggregation segmentation network for enhanced rgb-thermal urban scene parsing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HEFANet:%20hierarchical%20efficient%20fusion%20and%20aggregation%20segmentation%20network%20for%20enhanced%20rgb-thermal%20urban%20scene%20parsing&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Shen,%20Zhengwen&rft.date=2024-11-01&rft.volume=54&rft.issue=22&rft.spage=11248&rft.epage=11266&rft.pages=11248-11266&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-024-05743-0&rft_dat=%3Cproquest_cross%3E3106536726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106536726&rft_id=info:pmid/&rfr_iscdi=true