DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection on UAV Aerial Photography
With the rapid proliferation of drones across various domains, aerial target detection has become increasingly crucial. However, the targets in aerial images present challenges such as scale variation, small size, and density, leading to suboptimal performance of current detectors on aerial images....
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.125160-125169 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125169 |
---|---|
container_issue | |
container_start_page | 125160 |
container_title | IEEE access |
container_volume | 12 |
creator | Qiu, Xiaoyang Chen, Yajun Sun, Chaoyue Li, Jianying Niu, Meiqi |
description | With the rapid proliferation of drones across various domains, aerial target detection has become increasingly crucial. However, the targets in aerial images present challenges such as scale variation, small size, and density, leading to suboptimal performance of current detectors on aerial images. Based on the aforementioned challenges, we design an efficient aerial target detection algorithm called DMFF-YOLO. Specifically, to address the issues of small target size and scale variation, we design the DMFF neck structure, adding a small target detection head to tackle the small target size problem, using the DMC module to fuse different scale features for enriching detailed information, and employing the DSSFF module to construct a scale sequence space to solve the target scale variation problem. In the network backbone, we employ RFCBAMConv modules as downsampling layers, which interact with receptive-field features to mitigate the information disparity caused by positional changes and outperform traditional convolutional layers. Finally, we design the Soft-NMS-CIoU module to address the issue of suppressing adjacent boxes due to dense targets. On the VisDrone dataset, compared to the original algorithm, our method reduces the number of parameters by 31.1% while achieving an 11.7% improvement in mAP50. Extensive experiments on the VisDrone, DOTA, and UAVDT datasets demonstrate that the proposed algorithm performs well in aerial image detection tasks. |
doi_str_mv | 10.1109/ACCESS.2024.3452716 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106514008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10662972</ieee_id><doaj_id>oai_doaj_org_article_ed5682938eca40c4b89446e7f0b4a4da</doaj_id><sourcerecordid>3106514008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-71fb39ff3ff30aead624b8eb3e77b6f38b45b5a67945aa12956cf6c43443cd1d3</originalsourceid><addsrcrecordid>eNpNUV1rGzEQPEoLDWl-QfMg6PM5-r5T31w7bgIODiQp5Ens6VbJuRfLle4K_veRe6FELBox7MwumqL4yuiMMWou5ovF5d3djFMuZ0IqXjH9oTjhTJtSKKE_vnt_Ls5S2tJ86kyp6qT4vbxZrcrHzXrznRzvvzX5AQlbEnZkedjBS-fIzdgPXXLQI1khDGPMOKYud_gQyabZohvIEocMRzLXw_wXmWPsoCe3z2EITxH2z4cvxScPfcKzNzwtHlaX94urcr35eb2Yr0vHazOUFfONMN6LXBQQWs1lU2MjsKoa7UXdSNUo0JWRCoBxo7Tz2kkhpXAta8VpcT35tgG2dh-7F4gHG6Cz_4gQnyzEoXM9WmyVrrkRNTqQ1OU5RkqNlaeNBNlC9vo2ee1j-DNiGuw2jHGX17eCUa2YzH-Zu8TU5WJIKaL_P5VRewzJTiHZY0j2LaSsOp9UHSK-U2jNTcXFK7EXjEM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106514008</pqid></control><display><type>article</type><title>DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection on UAV Aerial Photography</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Qiu, Xiaoyang ; Chen, Yajun ; Sun, Chaoyue ; Li, Jianying ; Niu, Meiqi</creator><creatorcontrib>Qiu, Xiaoyang ; Chen, Yajun ; Sun, Chaoyue ; Li, Jianying ; Niu, Meiqi</creatorcontrib><description>With the rapid proliferation of drones across various domains, aerial target detection has become increasingly crucial. However, the targets in aerial images present challenges such as scale variation, small size, and density, leading to suboptimal performance of current detectors on aerial images. Based on the aforementioned challenges, we design an efficient aerial target detection algorithm called DMFF-YOLO. Specifically, to address the issues of small target size and scale variation, we design the DMFF neck structure, adding a small target detection head to tackle the small target size problem, using the DMC module to fuse different scale features for enriching detailed information, and employing the DSSFF module to construct a scale sequence space to solve the target scale variation problem. In the network backbone, we employ RFCBAMConv modules as downsampling layers, which interact with receptive-field features to mitigate the information disparity caused by positional changes and outperform traditional convolutional layers. Finally, we design the Soft-NMS-CIoU module to address the issue of suppressing adjacent boxes due to dense targets. On the VisDrone dataset, compared to the original algorithm, our method reduces the number of parameters by 31.1% while achieving an 11.7% improvement in mAP50. Extensive experiments on the VisDrone, DOTA, and UAVDT datasets demonstrate that the proposed algorithm performs well in aerial image detection tasks.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3452716</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerial photography ; Aerial targets ; Algorithms ; Autonomous aerial vehicles ; Datasets ; Detection algorithms ; Drone aircraft ; Drones ; Feature extraction ; Image detection ; Modules ; Monte Carlo methods ; Multi-scale feature fusion ; Object detection ; Object recognition ; small object detection ; Target detection ; Target tracking ; UAV ; Unmanned aerial vehicles ; YOLO</subject><ispartof>IEEE access, 2024, Vol.12, p.125160-125169</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-71fb39ff3ff30aead624b8eb3e77b6f38b45b5a67945aa12956cf6c43443cd1d3</cites><orcidid>0009-0002-5446-2887 ; 0009-0006-2494-1878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10662972$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Qiu, Xiaoyang</creatorcontrib><creatorcontrib>Chen, Yajun</creatorcontrib><creatorcontrib>Sun, Chaoyue</creatorcontrib><creatorcontrib>Li, Jianying</creatorcontrib><creatorcontrib>Niu, Meiqi</creatorcontrib><title>DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection on UAV Aerial Photography</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the rapid proliferation of drones across various domains, aerial target detection has become increasingly crucial. However, the targets in aerial images present challenges such as scale variation, small size, and density, leading to suboptimal performance of current detectors on aerial images. Based on the aforementioned challenges, we design an efficient aerial target detection algorithm called DMFF-YOLO. Specifically, to address the issues of small target size and scale variation, we design the DMFF neck structure, adding a small target detection head to tackle the small target size problem, using the DMC module to fuse different scale features for enriching detailed information, and employing the DSSFF module to construct a scale sequence space to solve the target scale variation problem. In the network backbone, we employ RFCBAMConv modules as downsampling layers, which interact with receptive-field features to mitigate the information disparity caused by positional changes and outperform traditional convolutional layers. Finally, we design the Soft-NMS-CIoU module to address the issue of suppressing adjacent boxes due to dense targets. On the VisDrone dataset, compared to the original algorithm, our method reduces the number of parameters by 31.1% while achieving an 11.7% improvement in mAP50. Extensive experiments on the VisDrone, DOTA, and UAVDT datasets demonstrate that the proposed algorithm performs well in aerial image detection tasks.</description><subject>Aerial photography</subject><subject>Aerial targets</subject><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Datasets</subject><subject>Detection algorithms</subject><subject>Drone aircraft</subject><subject>Drones</subject><subject>Feature extraction</subject><subject>Image detection</subject><subject>Modules</subject><subject>Monte Carlo methods</subject><subject>Multi-scale feature fusion</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>small object detection</subject><subject>Target detection</subject><subject>Target tracking</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><subject>YOLO</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rGzEQPEoLDWl-QfMg6PM5-r5T31w7bgIODiQp5Ens6VbJuRfLle4K_veRe6FELBox7MwumqL4yuiMMWou5ovF5d3djFMuZ0IqXjH9oTjhTJtSKKE_vnt_Ls5S2tJ86kyp6qT4vbxZrcrHzXrznRzvvzX5AQlbEnZkedjBS-fIzdgPXXLQI1khDGPMOKYud_gQyabZohvIEocMRzLXw_wXmWPsoCe3z2EITxH2z4cvxScPfcKzNzwtHlaX94urcr35eb2Yr0vHazOUFfONMN6LXBQQWs1lU2MjsKoa7UXdSNUo0JWRCoBxo7Tz2kkhpXAta8VpcT35tgG2dh-7F4gHG6Cz_4gQnyzEoXM9WmyVrrkRNTqQ1OU5RkqNlaeNBNlC9vo2ee1j-DNiGuw2jHGX17eCUa2YzH-Zu8TU5WJIKaL_P5VRewzJTiHZY0j2LaSsOp9UHSK-U2jNTcXFK7EXjEM</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Qiu, Xiaoyang</creator><creator>Chen, Yajun</creator><creator>Sun, Chaoyue</creator><creator>Li, Jianying</creator><creator>Niu, Meiqi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-5446-2887</orcidid><orcidid>https://orcid.org/0009-0006-2494-1878</orcidid></search><sort><creationdate>2024</creationdate><title>DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection on UAV Aerial Photography</title><author>Qiu, Xiaoyang ; Chen, Yajun ; Sun, Chaoyue ; Li, Jianying ; Niu, Meiqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-71fb39ff3ff30aead624b8eb3e77b6f38b45b5a67945aa12956cf6c43443cd1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerial photography</topic><topic>Aerial targets</topic><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Datasets</topic><topic>Detection algorithms</topic><topic>Drone aircraft</topic><topic>Drones</topic><topic>Feature extraction</topic><topic>Image detection</topic><topic>Modules</topic><topic>Monte Carlo methods</topic><topic>Multi-scale feature fusion</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>small object detection</topic><topic>Target detection</topic><topic>Target tracking</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Xiaoyang</creatorcontrib><creatorcontrib>Chen, Yajun</creatorcontrib><creatorcontrib>Sun, Chaoyue</creatorcontrib><creatorcontrib>Li, Jianying</creatorcontrib><creatorcontrib>Niu, Meiqi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Xiaoyang</au><au>Chen, Yajun</au><au>Sun, Chaoyue</au><au>Li, Jianying</au><au>Niu, Meiqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection on UAV Aerial Photography</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>125160</spage><epage>125169</epage><pages>125160-125169</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the rapid proliferation of drones across various domains, aerial target detection has become increasingly crucial. However, the targets in aerial images present challenges such as scale variation, small size, and density, leading to suboptimal performance of current detectors on aerial images. Based on the aforementioned challenges, we design an efficient aerial target detection algorithm called DMFF-YOLO. Specifically, to address the issues of small target size and scale variation, we design the DMFF neck structure, adding a small target detection head to tackle the small target size problem, using the DMC module to fuse different scale features for enriching detailed information, and employing the DSSFF module to construct a scale sequence space to solve the target scale variation problem. In the network backbone, we employ RFCBAMConv modules as downsampling layers, which interact with receptive-field features to mitigate the information disparity caused by positional changes and outperform traditional convolutional layers. Finally, we design the Soft-NMS-CIoU module to address the issue of suppressing adjacent boxes due to dense targets. On the VisDrone dataset, compared to the original algorithm, our method reduces the number of parameters by 31.1% while achieving an 11.7% improvement in mAP50. Extensive experiments on the VisDrone, DOTA, and UAVDT datasets demonstrate that the proposed algorithm performs well in aerial image detection tasks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3452716</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0002-5446-2887</orcidid><orcidid>https://orcid.org/0009-0006-2494-1878</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.125160-125169 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3106514008 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Aerial photography Aerial targets Algorithms Autonomous aerial vehicles Datasets Detection algorithms Drone aircraft Drones Feature extraction Image detection Modules Monte Carlo methods Multi-scale feature fusion Object detection Object recognition small object detection Target detection Target tracking UAV Unmanned aerial vehicles YOLO |
title | DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection on UAV Aerial Photography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DMFF-YOLO:%20YOLOv8%20Based%20on%20Dynamic%20Multiscale%20Feature%20Fusion%20for%20Object%20Detection%20on%20UAV%20Aerial%20Photography&rft.jtitle=IEEE%20access&rft.au=Qiu,%20Xiaoyang&rft.date=2024&rft.volume=12&rft.spage=125160&rft.epage=125169&rft.pages=125160-125169&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3452716&rft_dat=%3Cproquest_cross%3E3106514008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106514008&rft_id=info:pmid/&rft_ieee_id=10662972&rft_doaj_id=oai_doaj_org_article_ed5682938eca40c4b89446e7f0b4a4da&rfr_iscdi=true |