DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection on UAV Aerial Photography

With the rapid proliferation of drones across various domains, aerial target detection has become increasingly crucial. However, the targets in aerial images present challenges such as scale variation, small size, and density, leading to suboptimal performance of current detectors on aerial images....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.125160-125169
Hauptverfasser: Qiu, Xiaoyang, Chen, Yajun, Sun, Chaoyue, Li, Jianying, Niu, Meiqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125169
container_issue
container_start_page 125160
container_title IEEE access
container_volume 12
creator Qiu, Xiaoyang
Chen, Yajun
Sun, Chaoyue
Li, Jianying
Niu, Meiqi
description With the rapid proliferation of drones across various domains, aerial target detection has become increasingly crucial. However, the targets in aerial images present challenges such as scale variation, small size, and density, leading to suboptimal performance of current detectors on aerial images. Based on the aforementioned challenges, we design an efficient aerial target detection algorithm called DMFF-YOLO. Specifically, to address the issues of small target size and scale variation, we design the DMFF neck structure, adding a small target detection head to tackle the small target size problem, using the DMC module to fuse different scale features for enriching detailed information, and employing the DSSFF module to construct a scale sequence space to solve the target scale variation problem. In the network backbone, we employ RFCBAMConv modules as downsampling layers, which interact with receptive-field features to mitigate the information disparity caused by positional changes and outperform traditional convolutional layers. Finally, we design the Soft-NMS-CIoU module to address the issue of suppressing adjacent boxes due to dense targets. On the VisDrone dataset, compared to the original algorithm, our method reduces the number of parameters by 31.1% while achieving an 11.7% improvement in mAP50. Extensive experiments on the VisDrone, DOTA, and UAVDT datasets demonstrate that the proposed algorithm performs well in aerial image detection tasks.
doi_str_mv 10.1109/ACCESS.2024.3452716
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3106514008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10662972</ieee_id><doaj_id>oai_doaj_org_article_ed5682938eca40c4b89446e7f0b4a4da</doaj_id><sourcerecordid>3106514008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-71fb39ff3ff30aead624b8eb3e77b6f38b45b5a67945aa12956cf6c43443cd1d3</originalsourceid><addsrcrecordid>eNpNUV1rGzEQPEoLDWl-QfMg6PM5-r5T31w7bgIODiQp5Ens6VbJuRfLle4K_veRe6FELBox7MwumqL4yuiMMWou5ovF5d3djFMuZ0IqXjH9oTjhTJtSKKE_vnt_Ls5S2tJ86kyp6qT4vbxZrcrHzXrznRzvvzX5AQlbEnZkedjBS-fIzdgPXXLQI1khDGPMOKYud_gQyabZohvIEocMRzLXw_wXmWPsoCe3z2EITxH2z4cvxScPfcKzNzwtHlaX94urcr35eb2Yr0vHazOUFfONMN6LXBQQWs1lU2MjsKoa7UXdSNUo0JWRCoBxo7Tz2kkhpXAta8VpcT35tgG2dh-7F4gHG6Cz_4gQnyzEoXM9WmyVrrkRNTqQ1OU5RkqNlaeNBNlC9vo2ee1j-DNiGuw2jHGX17eCUa2YzH-Zu8TU5WJIKaL_P5VRewzJTiHZY0j2LaSsOp9UHSK-U2jNTcXFK7EXjEM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106514008</pqid></control><display><type>article</type><title>DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection on UAV Aerial Photography</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Qiu, Xiaoyang ; Chen, Yajun ; Sun, Chaoyue ; Li, Jianying ; Niu, Meiqi</creator><creatorcontrib>Qiu, Xiaoyang ; Chen, Yajun ; Sun, Chaoyue ; Li, Jianying ; Niu, Meiqi</creatorcontrib><description>With the rapid proliferation of drones across various domains, aerial target detection has become increasingly crucial. However, the targets in aerial images present challenges such as scale variation, small size, and density, leading to suboptimal performance of current detectors on aerial images. Based on the aforementioned challenges, we design an efficient aerial target detection algorithm called DMFF-YOLO. Specifically, to address the issues of small target size and scale variation, we design the DMFF neck structure, adding a small target detection head to tackle the small target size problem, using the DMC module to fuse different scale features for enriching detailed information, and employing the DSSFF module to construct a scale sequence space to solve the target scale variation problem. In the network backbone, we employ RFCBAMConv modules as downsampling layers, which interact with receptive-field features to mitigate the information disparity caused by positional changes and outperform traditional convolutional layers. Finally, we design the Soft-NMS-CIoU module to address the issue of suppressing adjacent boxes due to dense targets. On the VisDrone dataset, compared to the original algorithm, our method reduces the number of parameters by 31.1% while achieving an 11.7% improvement in mAP50. Extensive experiments on the VisDrone, DOTA, and UAVDT datasets demonstrate that the proposed algorithm performs well in aerial image detection tasks.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3452716</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerial photography ; Aerial targets ; Algorithms ; Autonomous aerial vehicles ; Datasets ; Detection algorithms ; Drone aircraft ; Drones ; Feature extraction ; Image detection ; Modules ; Monte Carlo methods ; Multi-scale feature fusion ; Object detection ; Object recognition ; small object detection ; Target detection ; Target tracking ; UAV ; Unmanned aerial vehicles ; YOLO</subject><ispartof>IEEE access, 2024, Vol.12, p.125160-125169</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-71fb39ff3ff30aead624b8eb3e77b6f38b45b5a67945aa12956cf6c43443cd1d3</cites><orcidid>0009-0002-5446-2887 ; 0009-0006-2494-1878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10662972$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Qiu, Xiaoyang</creatorcontrib><creatorcontrib>Chen, Yajun</creatorcontrib><creatorcontrib>Sun, Chaoyue</creatorcontrib><creatorcontrib>Li, Jianying</creatorcontrib><creatorcontrib>Niu, Meiqi</creatorcontrib><title>DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection on UAV Aerial Photography</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the rapid proliferation of drones across various domains, aerial target detection has become increasingly crucial. However, the targets in aerial images present challenges such as scale variation, small size, and density, leading to suboptimal performance of current detectors on aerial images. Based on the aforementioned challenges, we design an efficient aerial target detection algorithm called DMFF-YOLO. Specifically, to address the issues of small target size and scale variation, we design the DMFF neck structure, adding a small target detection head to tackle the small target size problem, using the DMC module to fuse different scale features for enriching detailed information, and employing the DSSFF module to construct a scale sequence space to solve the target scale variation problem. In the network backbone, we employ RFCBAMConv modules as downsampling layers, which interact with receptive-field features to mitigate the information disparity caused by positional changes and outperform traditional convolutional layers. Finally, we design the Soft-NMS-CIoU module to address the issue of suppressing adjacent boxes due to dense targets. On the VisDrone dataset, compared to the original algorithm, our method reduces the number of parameters by 31.1% while achieving an 11.7% improvement in mAP50. Extensive experiments on the VisDrone, DOTA, and UAVDT datasets demonstrate that the proposed algorithm performs well in aerial image detection tasks.</description><subject>Aerial photography</subject><subject>Aerial targets</subject><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Datasets</subject><subject>Detection algorithms</subject><subject>Drone aircraft</subject><subject>Drones</subject><subject>Feature extraction</subject><subject>Image detection</subject><subject>Modules</subject><subject>Monte Carlo methods</subject><subject>Multi-scale feature fusion</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>small object detection</subject><subject>Target detection</subject><subject>Target tracking</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><subject>YOLO</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rGzEQPEoLDWl-QfMg6PM5-r5T31w7bgIODiQp5Ens6VbJuRfLle4K_veRe6FELBox7MwumqL4yuiMMWou5ovF5d3djFMuZ0IqXjH9oTjhTJtSKKE_vnt_Ls5S2tJ86kyp6qT4vbxZrcrHzXrznRzvvzX5AQlbEnZkedjBS-fIzdgPXXLQI1khDGPMOKYud_gQyabZohvIEocMRzLXw_wXmWPsoCe3z2EITxH2z4cvxScPfcKzNzwtHlaX94urcr35eb2Yr0vHazOUFfONMN6LXBQQWs1lU2MjsKoa7UXdSNUo0JWRCoBxo7Tz2kkhpXAta8VpcT35tgG2dh-7F4gHG6Cz_4gQnyzEoXM9WmyVrrkRNTqQ1OU5RkqNlaeNBNlC9vo2ee1j-DNiGuw2jHGX17eCUa2YzH-Zu8TU5WJIKaL_P5VRewzJTiHZY0j2LaSsOp9UHSK-U2jNTcXFK7EXjEM</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Qiu, Xiaoyang</creator><creator>Chen, Yajun</creator><creator>Sun, Chaoyue</creator><creator>Li, Jianying</creator><creator>Niu, Meiqi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-5446-2887</orcidid><orcidid>https://orcid.org/0009-0006-2494-1878</orcidid></search><sort><creationdate>2024</creationdate><title>DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection on UAV Aerial Photography</title><author>Qiu, Xiaoyang ; Chen, Yajun ; Sun, Chaoyue ; Li, Jianying ; Niu, Meiqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-71fb39ff3ff30aead624b8eb3e77b6f38b45b5a67945aa12956cf6c43443cd1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerial photography</topic><topic>Aerial targets</topic><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Datasets</topic><topic>Detection algorithms</topic><topic>Drone aircraft</topic><topic>Drones</topic><topic>Feature extraction</topic><topic>Image detection</topic><topic>Modules</topic><topic>Monte Carlo methods</topic><topic>Multi-scale feature fusion</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>small object detection</topic><topic>Target detection</topic><topic>Target tracking</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Xiaoyang</creatorcontrib><creatorcontrib>Chen, Yajun</creatorcontrib><creatorcontrib>Sun, Chaoyue</creatorcontrib><creatorcontrib>Li, Jianying</creatorcontrib><creatorcontrib>Niu, Meiqi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Xiaoyang</au><au>Chen, Yajun</au><au>Sun, Chaoyue</au><au>Li, Jianying</au><au>Niu, Meiqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection on UAV Aerial Photography</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>125160</spage><epage>125169</epage><pages>125160-125169</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the rapid proliferation of drones across various domains, aerial target detection has become increasingly crucial. However, the targets in aerial images present challenges such as scale variation, small size, and density, leading to suboptimal performance of current detectors on aerial images. Based on the aforementioned challenges, we design an efficient aerial target detection algorithm called DMFF-YOLO. Specifically, to address the issues of small target size and scale variation, we design the DMFF neck structure, adding a small target detection head to tackle the small target size problem, using the DMC module to fuse different scale features for enriching detailed information, and employing the DSSFF module to construct a scale sequence space to solve the target scale variation problem. In the network backbone, we employ RFCBAMConv modules as downsampling layers, which interact with receptive-field features to mitigate the information disparity caused by positional changes and outperform traditional convolutional layers. Finally, we design the Soft-NMS-CIoU module to address the issue of suppressing adjacent boxes due to dense targets. On the VisDrone dataset, compared to the original algorithm, our method reduces the number of parameters by 31.1% while achieving an 11.7% improvement in mAP50. Extensive experiments on the VisDrone, DOTA, and UAVDT datasets demonstrate that the proposed algorithm performs well in aerial image detection tasks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3452716</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0002-5446-2887</orcidid><orcidid>https://orcid.org/0009-0006-2494-1878</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.125160-125169
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3106514008
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Aerial photography
Aerial targets
Algorithms
Autonomous aerial vehicles
Datasets
Detection algorithms
Drone aircraft
Drones
Feature extraction
Image detection
Modules
Monte Carlo methods
Multi-scale feature fusion
Object detection
Object recognition
small object detection
Target detection
Target tracking
UAV
Unmanned aerial vehicles
YOLO
title DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection on UAV Aerial Photography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DMFF-YOLO:%20YOLOv8%20Based%20on%20Dynamic%20Multiscale%20Feature%20Fusion%20for%20Object%20Detection%20on%20UAV%20Aerial%20Photography&rft.jtitle=IEEE%20access&rft.au=Qiu,%20Xiaoyang&rft.date=2024&rft.volume=12&rft.spage=125160&rft.epage=125169&rft.pages=125160-125169&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3452716&rft_dat=%3Cproquest_cross%3E3106514008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106514008&rft_id=info:pmid/&rft_ieee_id=10662972&rft_doaj_id=oai_doaj_org_article_ed5682938eca40c4b89446e7f0b4a4da&rfr_iscdi=true