ELLK-Net: An Efficient Lightweight Large Kernel Network for SAR Ship Detection

ELLK-Net, an efficient, lightweight network with a large kernel, is proposed for synthetic aperture radar (SAR) ship detection. It addresses background variations, different ship scales, and noise interference challenges. ELLK-Net uses an anchor-free detector framework and sequentially decomposes la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14
Hauptverfasser: Shen, Jiaming, Bai, Lin, Zhang, Yunqi, Chowdhuray Momi, Moslema, Quan, Siwen, Ye, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Shen, Jiaming
Bai, Lin
Zhang, Yunqi
Chowdhuray Momi, Moslema
Quan, Siwen
Ye, Zhen
description ELLK-Net, an efficient, lightweight network with a large kernel, is proposed for synthetic aperture radar (SAR) ship detection. It addresses background variations, different ship scales, and noise interference challenges. ELLK-Net uses an anchor-free detector framework and sequentially decomposes large kernel convolutions to capture comprehensive global information and long-range dependencies. It adaptively selects convolution kernels on the basis of target characteristics, enhancing multiscale feature expression. A novel large kernel multiscale attention (LKMA) module is introduced to enhance interlayer feature fusion and semantic alignment, mitigating the impacts of overlapping ships and scattering noise. Structural reparameterization techniques optimize inference speed across devices without compromising accuracy. The experimental results on the SAR ship detection dataset (SSDD) and high-resolution SAR image dataset (HRSID) datasets demonstrate that ELLK-Net achieves impressive AP50 values of 95.6% and 90.6% for horizontal box detection and 89.7% and 79.7% for rotating box detection, respectively. The reparameterized detector exhibits a significant 48.7% FPS improvement on the Nvidia Jetson NX platform, indicating its suitability for edge computing deployment. The code is available at https://github.com/CHD-IPAC/ELLK-Net .
doi_str_mv 10.1109/TGRS.2024.3451399
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3106500475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10659008</ieee_id><sourcerecordid>3106500475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-38f34537a568eeee6d207c90edf632ecbf38e1ac382149abd91c497d64a209d93</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGExH9ASYeNvFcnP3otuuNIKKhwQTwvCnbWShii9sS4r93Gzg4h5nLMzNvHkLuGQwYA_20nMwXAw5cDoSMmdD6gvRYHKcRKCkvSQ-YVhFPNb8mN02zBWABS3pkNs6yaTTD9pkOKzp2rrQlVi3NyvWmPWLXaZb7NdIp-gp3NKDH2n9RV3u6GM7pYlPu6Qu2aNuyrm7Jlct3Dd6dZ598vo6Xo7co-5i8j4ZZZFmi2kikLsQUSR6rFEOpgkNiNWDhlOBoV06kyHIrUs6kzleFZlbqpFAy56ALLfrk8XR37-ufAzat2dYHX4WXRjBQMYBM4kCxE2V93TQendn78jv3v4aB6bSZTpvptJmztrDzcNopQ65_vIo1QCr-ANl2Z2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106500475</pqid></control><display><type>article</type><title>ELLK-Net: An Efficient Lightweight Large Kernel Network for SAR Ship Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Jiaming ; Bai, Lin ; Zhang, Yunqi ; Chowdhuray Momi, Moslema ; Quan, Siwen ; Ye, Zhen</creator><creatorcontrib>Shen, Jiaming ; Bai, Lin ; Zhang, Yunqi ; Chowdhuray Momi, Moslema ; Quan, Siwen ; Ye, Zhen</creatorcontrib><description>ELLK-Net, an efficient, lightweight network with a large kernel, is proposed for synthetic aperture radar (SAR) ship detection. It addresses background variations, different ship scales, and noise interference challenges. ELLK-Net uses an anchor-free detector framework and sequentially decomposes large kernel convolutions to capture comprehensive global information and long-range dependencies. It adaptively selects convolution kernels on the basis of target characteristics, enhancing multiscale feature expression. A novel large kernel multiscale attention (LKMA) module is introduced to enhance interlayer feature fusion and semantic alignment, mitigating the impacts of overlapping ships and scattering noise. Structural reparameterization techniques optimize inference speed across devices without compromising accuracy. The experimental results on the SAR ship detection dataset (SSDD) and high-resolution SAR image dataset (HRSID) datasets demonstrate that ELLK-Net achieves impressive AP50 values of 95.6% and 90.6% for horizontal box detection and 89.7% and 79.7% for rotating box detection, respectively. The reparameterized detector exhibits a significant 48.7% FPS improvement on the Nvidia Jetson NX platform, indicating its suitability for edge computing deployment. The code is available at https://github.com/CHD-IPAC/ELLK-Net .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3451399</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Anchor-free ; Background noise ; Convolution ; Datasets ; Detectors ; Edge computing ; Feature extraction ; Head ; Image enhancement ; Image resolution ; Interlayers ; Kernel ; large kernel network ; Lightweight ; lightweight convolutional neural networks (CNNs) ; Marine vehicles ; Radar detection ; SAR (radar) ; ship detection ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Weight reduction</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-38f34537a568eeee6d207c90edf632ecbf38e1ac382149abd91c497d64a209d93</cites><orcidid>0000-0001-5410-863X ; 0000-0002-9910-7742 ; 0000-0001-7579-937X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10659008$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10659008$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Jiaming</creatorcontrib><creatorcontrib>Bai, Lin</creatorcontrib><creatorcontrib>Zhang, Yunqi</creatorcontrib><creatorcontrib>Chowdhuray Momi, Moslema</creatorcontrib><creatorcontrib>Quan, Siwen</creatorcontrib><creatorcontrib>Ye, Zhen</creatorcontrib><title>ELLK-Net: An Efficient Lightweight Large Kernel Network for SAR Ship Detection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>ELLK-Net, an efficient, lightweight network with a large kernel, is proposed for synthetic aperture radar (SAR) ship detection. It addresses background variations, different ship scales, and noise interference challenges. ELLK-Net uses an anchor-free detector framework and sequentially decomposes large kernel convolutions to capture comprehensive global information and long-range dependencies. It adaptively selects convolution kernels on the basis of target characteristics, enhancing multiscale feature expression. A novel large kernel multiscale attention (LKMA) module is introduced to enhance interlayer feature fusion and semantic alignment, mitigating the impacts of overlapping ships and scattering noise. Structural reparameterization techniques optimize inference speed across devices without compromising accuracy. The experimental results on the SAR ship detection dataset (SSDD) and high-resolution SAR image dataset (HRSID) datasets demonstrate that ELLK-Net achieves impressive AP50 values of 95.6% and 90.6% for horizontal box detection and 89.7% and 79.7% for rotating box detection, respectively. The reparameterized detector exhibits a significant 48.7% FPS improvement on the Nvidia Jetson NX platform, indicating its suitability for edge computing deployment. The code is available at https://github.com/CHD-IPAC/ELLK-Net .</description><subject>Accuracy</subject><subject>Anchor-free</subject><subject>Background noise</subject><subject>Convolution</subject><subject>Datasets</subject><subject>Detectors</subject><subject>Edge computing</subject><subject>Feature extraction</subject><subject>Head</subject><subject>Image enhancement</subject><subject>Image resolution</subject><subject>Interlayers</subject><subject>Kernel</subject><subject>large kernel network</subject><subject>Lightweight</subject><subject>lightweight convolutional neural networks (CNNs)</subject><subject>Marine vehicles</subject><subject>Radar detection</subject><subject>SAR (radar)</subject><subject>ship detection</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Weight reduction</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGExH9ASYeNvFcnP3otuuNIKKhwQTwvCnbWShii9sS4r93Gzg4h5nLMzNvHkLuGQwYA_20nMwXAw5cDoSMmdD6gvRYHKcRKCkvSQ-YVhFPNb8mN02zBWABS3pkNs6yaTTD9pkOKzp2rrQlVi3NyvWmPWLXaZb7NdIp-gp3NKDH2n9RV3u6GM7pYlPu6Qu2aNuyrm7Jlct3Dd6dZ598vo6Xo7co-5i8j4ZZZFmi2kikLsQUSR6rFEOpgkNiNWDhlOBoV06kyHIrUs6kzleFZlbqpFAy56ALLfrk8XR37-ufAzat2dYHX4WXRjBQMYBM4kCxE2V93TQendn78jv3v4aB6bSZTpvptJmztrDzcNopQ65_vIo1QCr-ANl2Z2c</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Shen, Jiaming</creator><creator>Bai, Lin</creator><creator>Zhang, Yunqi</creator><creator>Chowdhuray Momi, Moslema</creator><creator>Quan, Siwen</creator><creator>Ye, Zhen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5410-863X</orcidid><orcidid>https://orcid.org/0000-0002-9910-7742</orcidid><orcidid>https://orcid.org/0000-0001-7579-937X</orcidid></search><sort><creationdate>2024</creationdate><title>ELLK-Net: An Efficient Lightweight Large Kernel Network for SAR Ship Detection</title><author>Shen, Jiaming ; Bai, Lin ; Zhang, Yunqi ; Chowdhuray Momi, Moslema ; Quan, Siwen ; Ye, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-38f34537a568eeee6d207c90edf632ecbf38e1ac382149abd91c497d64a209d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Anchor-free</topic><topic>Background noise</topic><topic>Convolution</topic><topic>Datasets</topic><topic>Detectors</topic><topic>Edge computing</topic><topic>Feature extraction</topic><topic>Head</topic><topic>Image enhancement</topic><topic>Image resolution</topic><topic>Interlayers</topic><topic>Kernel</topic><topic>large kernel network</topic><topic>Lightweight</topic><topic>lightweight convolutional neural networks (CNNs)</topic><topic>Marine vehicles</topic><topic>Radar detection</topic><topic>SAR (radar)</topic><topic>ship detection</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jiaming</creatorcontrib><creatorcontrib>Bai, Lin</creatorcontrib><creatorcontrib>Zhang, Yunqi</creatorcontrib><creatorcontrib>Chowdhuray Momi, Moslema</creatorcontrib><creatorcontrib>Quan, Siwen</creatorcontrib><creatorcontrib>Ye, Zhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Jiaming</au><au>Bai, Lin</au><au>Zhang, Yunqi</au><au>Chowdhuray Momi, Moslema</au><au>Quan, Siwen</au><au>Ye, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ELLK-Net: An Efficient Lightweight Large Kernel Network for SAR Ship Detection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>ELLK-Net, an efficient, lightweight network with a large kernel, is proposed for synthetic aperture radar (SAR) ship detection. It addresses background variations, different ship scales, and noise interference challenges. ELLK-Net uses an anchor-free detector framework and sequentially decomposes large kernel convolutions to capture comprehensive global information and long-range dependencies. It adaptively selects convolution kernels on the basis of target characteristics, enhancing multiscale feature expression. A novel large kernel multiscale attention (LKMA) module is introduced to enhance interlayer feature fusion and semantic alignment, mitigating the impacts of overlapping ships and scattering noise. Structural reparameterization techniques optimize inference speed across devices without compromising accuracy. The experimental results on the SAR ship detection dataset (SSDD) and high-resolution SAR image dataset (HRSID) datasets demonstrate that ELLK-Net achieves impressive AP50 values of 95.6% and 90.6% for horizontal box detection and 89.7% and 79.7% for rotating box detection, respectively. The reparameterized detector exhibits a significant 48.7% FPS improvement on the Nvidia Jetson NX platform, indicating its suitability for edge computing deployment. The code is available at https://github.com/CHD-IPAC/ELLK-Net .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3451399</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5410-863X</orcidid><orcidid>https://orcid.org/0000-0002-9910-7742</orcidid><orcidid>https://orcid.org/0000-0001-7579-937X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_3106500475
source IEEE Electronic Library (IEL)
subjects Accuracy
Anchor-free
Background noise
Convolution
Datasets
Detectors
Edge computing
Feature extraction
Head
Image enhancement
Image resolution
Interlayers
Kernel
large kernel network
Lightweight
lightweight convolutional neural networks (CNNs)
Marine vehicles
Radar detection
SAR (radar)
ship detection
Synthetic aperture radar
synthetic aperture radar (SAR)
Weight reduction
title ELLK-Net: An Efficient Lightweight Large Kernel Network for SAR Ship Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ELLK-Net:%20An%20Efficient%20Lightweight%20Large%20Kernel%20Network%20for%20SAR%20Ship%20Detection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Shen,%20Jiaming&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3451399&rft_dat=%3Cproquest_RIE%3E3106500475%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106500475&rft_id=info:pmid/&rft_ieee_id=10659008&rfr_iscdi=true