Comparing Retrieval-Augmentation and Parameter-Efficient Fine-Tuning for Privacy-Preserving Personalization of Large Language Models
Privacy-preserving methods for personalizing large language models (LLMs) are relatively under-explored. There are two schools of thought on this topic: (1) generating personalized outputs by personalizing the input prompt through retrieval augmentation from the user's personal information (RAG...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Salemi, Alireza Zamani, Hamed |
description | Privacy-preserving methods for personalizing large language models (LLMs) are relatively under-explored. There are two schools of thought on this topic: (1) generating personalized outputs by personalizing the input prompt through retrieval augmentation from the user's personal information (RAG-based methods), and (2) parameter-efficient fine-tuning of LLMs per user that considers efficiency and space limitations (PEFT-based methods). This paper presents the first systematic comparison between two approaches on a wide range of personalization tasks using seven diverse datasets. Our results indicate that RAG-based and PEFT-based personalization methods on average yield 14.92% and 1.07% improvements over the non-personalized LLM, respectively. We find that combining RAG with PEFT elevates these improvements to 15.98%. Additionally, we identify a positive correlation between the amount of user data and PEFT's effectiveness, indicating that RAG is a better choice for cold-start users (i.e., user's with limited personal data). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3106245894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106245894</sourcerecordid><originalsourceid>FETCH-proquest_journals_31062458943</originalsourceid><addsrcrecordid>eNqNTEsKwjAUDIKgqHcIuA7UpK26FFFcKBRxLw99KSltoi9JQdce3IoewM3MML8eG0qlZmKRSjlgE--rJElkPpdZpobstXbNDcjYkh8xkMEWarGKZYM2QDDOcrBXXgBBgwFJbLQ2F9OFfGssilO0n6l2xAsyLVweoiD0SO3HLpC8s1Cb5_fKab4HKrFDW0boxMFdsfZj1tdQe5z8eMSm281pvRM3cveIPpwrF6k78mc1S3KZZotlqv5rvQH1BFLX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106245894</pqid></control><display><type>article</type><title>Comparing Retrieval-Augmentation and Parameter-Efficient Fine-Tuning for Privacy-Preserving Personalization of Large Language Models</title><source>Free E- Journals</source><creator>Salemi, Alireza ; Zamani, Hamed</creator><creatorcontrib>Salemi, Alireza ; Zamani, Hamed</creatorcontrib><description>Privacy-preserving methods for personalizing large language models (LLMs) are relatively under-explored. There are two schools of thought on this topic: (1) generating personalized outputs by personalizing the input prompt through retrieval augmentation from the user's personal information (RAG-based methods), and (2) parameter-efficient fine-tuning of LLMs per user that considers efficiency and space limitations (PEFT-based methods). This paper presents the first systematic comparison between two approaches on a wide range of personalization tasks using seven diverse datasets. Our results indicate that RAG-based and PEFT-based personalization methods on average yield 14.92% and 1.07% improvements over the non-personalized LLM, respectively. We find that combining RAG with PEFT elevates these improvements to 15.98%. Additionally, we identify a positive correlation between the amount of user data and PEFT's effectiveness, indicating that RAG is a better choice for cold-start users (i.e., user's with limited personal data).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Customization ; Information retrieval ; Large language models ; Parameters ; Privacy</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Salemi, Alireza</creatorcontrib><creatorcontrib>Zamani, Hamed</creatorcontrib><title>Comparing Retrieval-Augmentation and Parameter-Efficient Fine-Tuning for Privacy-Preserving Personalization of Large Language Models</title><title>arXiv.org</title><description>Privacy-preserving methods for personalizing large language models (LLMs) are relatively under-explored. There are two schools of thought on this topic: (1) generating personalized outputs by personalizing the input prompt through retrieval augmentation from the user's personal information (RAG-based methods), and (2) parameter-efficient fine-tuning of LLMs per user that considers efficiency and space limitations (PEFT-based methods). This paper presents the first systematic comparison between two approaches on a wide range of personalization tasks using seven diverse datasets. Our results indicate that RAG-based and PEFT-based personalization methods on average yield 14.92% and 1.07% improvements over the non-personalized LLM, respectively. We find that combining RAG with PEFT elevates these improvements to 15.98%. Additionally, we identify a positive correlation between the amount of user data and PEFT's effectiveness, indicating that RAG is a better choice for cold-start users (i.e., user's with limited personal data).</description><subject>Customization</subject><subject>Information retrieval</subject><subject>Large language models</subject><subject>Parameters</subject><subject>Privacy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNTEsKwjAUDIKgqHcIuA7UpK26FFFcKBRxLw99KSltoi9JQdce3IoewM3MML8eG0qlZmKRSjlgE--rJElkPpdZpobstXbNDcjYkh8xkMEWarGKZYM2QDDOcrBXXgBBgwFJbLQ2F9OFfGssilO0n6l2xAsyLVweoiD0SO3HLpC8s1Cb5_fKab4HKrFDW0boxMFdsfZj1tdQe5z8eMSm281pvRM3cveIPpwrF6k78mc1S3KZZotlqv5rvQH1BFLX</recordid><startdate>20240914</startdate><enddate>20240914</enddate><creator>Salemi, Alireza</creator><creator>Zamani, Hamed</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240914</creationdate><title>Comparing Retrieval-Augmentation and Parameter-Efficient Fine-Tuning for Privacy-Preserving Personalization of Large Language Models</title><author>Salemi, Alireza ; Zamani, Hamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31062458943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Customization</topic><topic>Information retrieval</topic><topic>Large language models</topic><topic>Parameters</topic><topic>Privacy</topic><toplevel>online_resources</toplevel><creatorcontrib>Salemi, Alireza</creatorcontrib><creatorcontrib>Zamani, Hamed</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salemi, Alireza</au><au>Zamani, Hamed</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Comparing Retrieval-Augmentation and Parameter-Efficient Fine-Tuning for Privacy-Preserving Personalization of Large Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-09-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Privacy-preserving methods for personalizing large language models (LLMs) are relatively under-explored. There are two schools of thought on this topic: (1) generating personalized outputs by personalizing the input prompt through retrieval augmentation from the user's personal information (RAG-based methods), and (2) parameter-efficient fine-tuning of LLMs per user that considers efficiency and space limitations (PEFT-based methods). This paper presents the first systematic comparison between two approaches on a wide range of personalization tasks using seven diverse datasets. Our results indicate that RAG-based and PEFT-based personalization methods on average yield 14.92% and 1.07% improvements over the non-personalized LLM, respectively. We find that combining RAG with PEFT elevates these improvements to 15.98%. Additionally, we identify a positive correlation between the amount of user data and PEFT's effectiveness, indicating that RAG is a better choice for cold-start users (i.e., user's with limited personal data).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3106245894 |
source | Free E- Journals |
subjects | Customization Information retrieval Large language models Parameters Privacy |
title | Comparing Retrieval-Augmentation and Parameter-Efficient Fine-Tuning for Privacy-Preserving Personalization of Large Language Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Comparing%20Retrieval-Augmentation%20and%20Parameter-Efficient%20Fine-Tuning%20for%20Privacy-Preserving%20Personalization%20of%20Large%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Salemi,%20Alireza&rft.date=2024-09-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3106245894%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106245894&rft_id=info:pmid/&rfr_iscdi=true |