An Entropy-Based Test and Development Framework for Uncertainty Modeling in Level-Set Visualizations

We present a simple comparative framework for testing and developing uncertainty modeling in uncertain marching cubes implementations. The selection of a model to represent the probability distribution of uncertain values directly influences the memory use, run time, and accuracy of an uncertainty v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Sisneros, Robert, Athawale, Tushar M, Pugmire, David, Moreland, Kenneth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sisneros, Robert
Athawale, Tushar M
Pugmire, David
Moreland, Kenneth
description We present a simple comparative framework for testing and developing uncertainty modeling in uncertain marching cubes implementations. The selection of a model to represent the probability distribution of uncertain values directly influences the memory use, run time, and accuracy of an uncertainty visualization algorithm. We use an entropy calculation directly on ensemble data to establish an expected result and then compare the entropy from various probability models, including uniform, Gaussian, histogram, and quantile models. Our results verify that models matching the distribution of the ensemble indeed match the entropy. We further show that fewer bins in nonparametric histogram models are more effective whereas large numbers of bins in quantile models approach data accuracy.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3105554424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3105554424</sourcerecordid><originalsourceid>FETCH-proquest_journals_31055544243</originalsourceid><addsrcrecordid>eNqNjcsKwjAQRYMgWNR_GHBdaJNG3fpocaErH1sJdiqp7aQmqVK_XgU_wNVdnHO4PRZwIeJwnnA-YGPnyiiK-HTGpRQByxcEKXlrmi5cKoc5HNB5UJTDGh9YmaZG8pBZVePT2BsUxsKRLmi90uQ72JkcK01X0ATbbxHu0cNJu1ZV-qW8NuRGrF-oyuH4t0M2ydLDahM21tzbz9-5NK2lDzqLOJJSJglPxH_WGwAvRlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3105554424</pqid></control><display><type>article</type><title>An Entropy-Based Test and Development Framework for Uncertainty Modeling in Level-Set Visualizations</title><source>Freely Accessible Journals</source><creator>Sisneros, Robert ; Athawale, Tushar M ; Pugmire, David ; Moreland, Kenneth</creator><creatorcontrib>Sisneros, Robert ; Athawale, Tushar M ; Pugmire, David ; Moreland, Kenneth</creatorcontrib><description>We present a simple comparative framework for testing and developing uncertainty modeling in uncertain marching cubes implementations. The selection of a model to represent the probability distribution of uncertain values directly influences the memory use, run time, and accuracy of an uncertainty visualization algorithm. We use an entropy calculation directly on ensemble data to establish an expected result and then compare the entropy from various probability models, including uniform, Gaussian, histogram, and quantile models. Our results verify that models matching the distribution of the ensemble indeed match the entropy. We further show that fewer bins in nonparametric histogram models are more effective whereas large numbers of bins in quantile models approach data accuracy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Algorithms ; Bins ; Cubes ; Entropy ; Histograms ; Modelling ; Quantiles ; Uncertainty</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Sisneros, Robert</creatorcontrib><creatorcontrib>Athawale, Tushar M</creatorcontrib><creatorcontrib>Pugmire, David</creatorcontrib><creatorcontrib>Moreland, Kenneth</creatorcontrib><title>An Entropy-Based Test and Development Framework for Uncertainty Modeling in Level-Set Visualizations</title><title>arXiv.org</title><description>We present a simple comparative framework for testing and developing uncertainty modeling in uncertain marching cubes implementations. The selection of a model to represent the probability distribution of uncertain values directly influences the memory use, run time, and accuracy of an uncertainty visualization algorithm. We use an entropy calculation directly on ensemble data to establish an expected result and then compare the entropy from various probability models, including uniform, Gaussian, histogram, and quantile models. Our results verify that models matching the distribution of the ensemble indeed match the entropy. We further show that fewer bins in nonparametric histogram models are more effective whereas large numbers of bins in quantile models approach data accuracy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bins</subject><subject>Cubes</subject><subject>Entropy</subject><subject>Histograms</subject><subject>Modelling</subject><subject>Quantiles</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjcsKwjAQRYMgWNR_GHBdaJNG3fpocaErH1sJdiqp7aQmqVK_XgU_wNVdnHO4PRZwIeJwnnA-YGPnyiiK-HTGpRQByxcEKXlrmi5cKoc5HNB5UJTDGh9YmaZG8pBZVePT2BsUxsKRLmi90uQ72JkcK01X0ATbbxHu0cNJu1ZV-qW8NuRGrF-oyuH4t0M2ydLDahM21tzbz9-5NK2lDzqLOJJSJglPxH_WGwAvRlQ</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Sisneros, Robert</creator><creator>Athawale, Tushar M</creator><creator>Pugmire, David</creator><creator>Moreland, Kenneth</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240913</creationdate><title>An Entropy-Based Test and Development Framework for Uncertainty Modeling in Level-Set Visualizations</title><author>Sisneros, Robert ; Athawale, Tushar M ; Pugmire, David ; Moreland, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31055544243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bins</topic><topic>Cubes</topic><topic>Entropy</topic><topic>Histograms</topic><topic>Modelling</topic><topic>Quantiles</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Sisneros, Robert</creatorcontrib><creatorcontrib>Athawale, Tushar M</creatorcontrib><creatorcontrib>Pugmire, David</creatorcontrib><creatorcontrib>Moreland, Kenneth</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sisneros, Robert</au><au>Athawale, Tushar M</au><au>Pugmire, David</au><au>Moreland, Kenneth</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Entropy-Based Test and Development Framework for Uncertainty Modeling in Level-Set Visualizations</atitle><jtitle>arXiv.org</jtitle><date>2024-09-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present a simple comparative framework for testing and developing uncertainty modeling in uncertain marching cubes implementations. The selection of a model to represent the probability distribution of uncertain values directly influences the memory use, run time, and accuracy of an uncertainty visualization algorithm. We use an entropy calculation directly on ensemble data to establish an expected result and then compare the entropy from various probability models, including uniform, Gaussian, histogram, and quantile models. Our results verify that models matching the distribution of the ensemble indeed match the entropy. We further show that fewer bins in nonparametric histogram models are more effective whereas large numbers of bins in quantile models approach data accuracy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3105554424
source Freely Accessible Journals
subjects Accuracy
Algorithms
Bins
Cubes
Entropy
Histograms
Modelling
Quantiles
Uncertainty
title An Entropy-Based Test and Development Framework for Uncertainty Modeling in Level-Set Visualizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Entropy-Based%20Test%20and%20Development%20Framework%20for%20Uncertainty%20Modeling%20in%20Level-Set%20Visualizations&rft.jtitle=arXiv.org&rft.au=Sisneros,%20Robert&rft.date=2024-09-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3105554424%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3105554424&rft_id=info:pmid/&rfr_iscdi=true