An Entropy-Based Test and Development Framework for Uncertainty Modeling in Level-Set Visualizations
We present a simple comparative framework for testing and developing uncertainty modeling in uncertain marching cubes implementations. The selection of a model to represent the probability distribution of uncertain values directly influences the memory use, run time, and accuracy of an uncertainty v...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sisneros, Robert Athawale, Tushar M Pugmire, David Moreland, Kenneth |
description | We present a simple comparative framework for testing and developing uncertainty modeling in uncertain marching cubes implementations. The selection of a model to represent the probability distribution of uncertain values directly influences the memory use, run time, and accuracy of an uncertainty visualization algorithm. We use an entropy calculation directly on ensemble data to establish an expected result and then compare the entropy from various probability models, including uniform, Gaussian, histogram, and quantile models. Our results verify that models matching the distribution of the ensemble indeed match the entropy. We further show that fewer bins in nonparametric histogram models are more effective whereas large numbers of bins in quantile models approach data accuracy. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3105554424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3105554424</sourcerecordid><originalsourceid>FETCH-proquest_journals_31055544243</originalsourceid><addsrcrecordid>eNqNjcsKwjAQRYMgWNR_GHBdaJNG3fpocaErH1sJdiqp7aQmqVK_XgU_wNVdnHO4PRZwIeJwnnA-YGPnyiiK-HTGpRQByxcEKXlrmi5cKoc5HNB5UJTDGh9YmaZG8pBZVePT2BsUxsKRLmi90uQ72JkcK01X0ATbbxHu0cNJu1ZV-qW8NuRGrF-oyuH4t0M2ydLDahM21tzbz9-5NK2lDzqLOJJSJglPxH_WGwAvRlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3105554424</pqid></control><display><type>article</type><title>An Entropy-Based Test and Development Framework for Uncertainty Modeling in Level-Set Visualizations</title><source>Freely Accessible Journals</source><creator>Sisneros, Robert ; Athawale, Tushar M ; Pugmire, David ; Moreland, Kenneth</creator><creatorcontrib>Sisneros, Robert ; Athawale, Tushar M ; Pugmire, David ; Moreland, Kenneth</creatorcontrib><description>We present a simple comparative framework for testing and developing uncertainty modeling in uncertain marching cubes implementations. The selection of a model to represent the probability distribution of uncertain values directly influences the memory use, run time, and accuracy of an uncertainty visualization algorithm. We use an entropy calculation directly on ensemble data to establish an expected result and then compare the entropy from various probability models, including uniform, Gaussian, histogram, and quantile models. Our results verify that models matching the distribution of the ensemble indeed match the entropy. We further show that fewer bins in nonparametric histogram models are more effective whereas large numbers of bins in quantile models approach data accuracy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Algorithms ; Bins ; Cubes ; Entropy ; Histograms ; Modelling ; Quantiles ; Uncertainty</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Sisneros, Robert</creatorcontrib><creatorcontrib>Athawale, Tushar M</creatorcontrib><creatorcontrib>Pugmire, David</creatorcontrib><creatorcontrib>Moreland, Kenneth</creatorcontrib><title>An Entropy-Based Test and Development Framework for Uncertainty Modeling in Level-Set Visualizations</title><title>arXiv.org</title><description>We present a simple comparative framework for testing and developing uncertainty modeling in uncertain marching cubes implementations. The selection of a model to represent the probability distribution of uncertain values directly influences the memory use, run time, and accuracy of an uncertainty visualization algorithm. We use an entropy calculation directly on ensemble data to establish an expected result and then compare the entropy from various probability models, including uniform, Gaussian, histogram, and quantile models. Our results verify that models matching the distribution of the ensemble indeed match the entropy. We further show that fewer bins in nonparametric histogram models are more effective whereas large numbers of bins in quantile models approach data accuracy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bins</subject><subject>Cubes</subject><subject>Entropy</subject><subject>Histograms</subject><subject>Modelling</subject><subject>Quantiles</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjcsKwjAQRYMgWNR_GHBdaJNG3fpocaErH1sJdiqp7aQmqVK_XgU_wNVdnHO4PRZwIeJwnnA-YGPnyiiK-HTGpRQByxcEKXlrmi5cKoc5HNB5UJTDGh9YmaZG8pBZVePT2BsUxsKRLmi90uQ72JkcK01X0ATbbxHu0cNJu1ZV-qW8NuRGrF-oyuH4t0M2ydLDahM21tzbz9-5NK2lDzqLOJJSJglPxH_WGwAvRlQ</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Sisneros, Robert</creator><creator>Athawale, Tushar M</creator><creator>Pugmire, David</creator><creator>Moreland, Kenneth</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240913</creationdate><title>An Entropy-Based Test and Development Framework for Uncertainty Modeling in Level-Set Visualizations</title><author>Sisneros, Robert ; Athawale, Tushar M ; Pugmire, David ; Moreland, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31055544243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bins</topic><topic>Cubes</topic><topic>Entropy</topic><topic>Histograms</topic><topic>Modelling</topic><topic>Quantiles</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Sisneros, Robert</creatorcontrib><creatorcontrib>Athawale, Tushar M</creatorcontrib><creatorcontrib>Pugmire, David</creatorcontrib><creatorcontrib>Moreland, Kenneth</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sisneros, Robert</au><au>Athawale, Tushar M</au><au>Pugmire, David</au><au>Moreland, Kenneth</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Entropy-Based Test and Development Framework for Uncertainty Modeling in Level-Set Visualizations</atitle><jtitle>arXiv.org</jtitle><date>2024-09-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present a simple comparative framework for testing and developing uncertainty modeling in uncertain marching cubes implementations. The selection of a model to represent the probability distribution of uncertain values directly influences the memory use, run time, and accuracy of an uncertainty visualization algorithm. We use an entropy calculation directly on ensemble data to establish an expected result and then compare the entropy from various probability models, including uniform, Gaussian, histogram, and quantile models. Our results verify that models matching the distribution of the ensemble indeed match the entropy. We further show that fewer bins in nonparametric histogram models are more effective whereas large numbers of bins in quantile models approach data accuracy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3105554424 |
source | Freely Accessible Journals |
subjects | Accuracy Algorithms Bins Cubes Entropy Histograms Modelling Quantiles Uncertainty |
title | An Entropy-Based Test and Development Framework for Uncertainty Modeling in Level-Set Visualizations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Entropy-Based%20Test%20and%20Development%20Framework%20for%20Uncertainty%20Modeling%20in%20Level-Set%20Visualizations&rft.jtitle=arXiv.org&rft.au=Sisneros,%20Robert&rft.date=2024-09-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3105554424%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3105554424&rft_id=info:pmid/&rfr_iscdi=true |