Exploiting Supervised Poison Vulnerability to Strengthen Self-Supervised Defense

Availability poisons exploit supervised learning (SL) algorithms by introducing class-related shortcut features in images such that models trained on poisoned data are useless for real-world datasets. Self-supervised learning (SSL), which utilizes augmentations to learn instance discrimination, is r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Styborski, Jeremy, Lyu, Mingzhi, Huang, Yi, Adams, Kong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!