Dielectric and thermal conductive properties of differently structured Ti3C2Tx MXene-integrated nanofibrillated cellulose films

The fabrication of nanocellulose-based substrates with high dielectric permittivity and anisotropic thermal conductivity to replace synthetic thermoplastics in flexible organic electronics remains a big challenge. Herein, films were prepared from native (CNF) and carboxylated (TCNF) cellulose nanofi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2024-09, Vol.31 (13), p.8149-8168
Hauptverfasser: Lakshmanan, Subramanian, Jurečič, Vida, Bobnar, Vid, Kokol, Vanja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8168
container_issue 13
container_start_page 8149
container_title Cellulose (London)
container_volume 31
creator Lakshmanan, Subramanian
Jurečič, Vida
Bobnar, Vid
Kokol, Vanja
description The fabrication of nanocellulose-based substrates with high dielectric permittivity and anisotropic thermal conductivity to replace synthetic thermoplastics in flexible organic electronics remains a big challenge. Herein, films were prepared from native (CNF) and carboxylated (TCNF) cellulose nanofibrils, with and without the addition of thermally conductive multi-layered Ti 3 C 2 T x MXene, to examine the impact of polar (− OH, − COOH) surface groups on the film morphological, moisturizing, dielectric, and thermal dissipation properties. The electrostatic repulsion and hydrogen bonding interaction between the hydrophilic surface/terminal groups on CNF/TCNF and MXene was shown to render their self-assembly distribution and organization into morphologically differently structured films, and, consequently, different properties. The pristine CNF film achieved high intrinsic dielectric permittivity (ε' ~ 9), which was further increased to almost ε' ~ 14 by increasing (50 wt%) the MXene content. The well-packed and aligned structure of thinner TCNF films enables the tuning of both the composite’s dielectric permittivity (ε' ~ 6) and through-plane thermal conductivity (K ~ 2.9 W/mK), which increased strongly (ε' ~ 17) at higher MXene loading giving in-plane thermal conductivity of ~ 6.3 W/mK. The air-absorbed moisture ability of the films contributes to heat dissipation by releasing it. The dielectric losses remained below 0.1 in all the composite films, showing their potential for application in electronics. Graphic abstract
doi_str_mv 10.1007/s10570-024-06105-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3105539712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153783284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-c89bd307bd40ccb68275030efa11593c49a248c7afd1d6a3de4e62238286c8563</originalsourceid><addsrcrecordid>eNp9kTFvFDEQhS0EEsfBH6CyREOzZGzvrr0lOkiIlIjmkNJZPnscHPm8h-1FScVfx5dDikSRamY03xu90SPkPYNPDECeFQaDhA5438HY-o6_ICs2SN4pxW9ekhVM49TWYnpN3pRyBwCT5GxF_nwJGNHWHCw1ydH6E_PeRGrn5BZbw2-khzwfMNeAhc6euuA9Zkw1PtBSc2OWjI5ug9jw7T29vsGEXUgVb7OpbZFMmn3Y5RDj42wxxiXOBakPcV_eklfexILv_tU1-XH-dbv51l19v7jcfL7qLJeydlZNOydA7lwP1u5GxeUAAtAbxoZJ2H4yvFdWGu-YG41w2OPIuVBcjVYNo1iTj6e77ZtfC5aq96EcvZiE81K0YIOQSnDVN_TDf-jdvOTU3DUKhkFMkvFG8RNl81xKRq8POexNftAM9DETfcpEt0z0Yyb6KBInUWlwusX8dPoZ1V-qOZEG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3105539712</pqid></control><display><type>article</type><title>Dielectric and thermal conductive properties of differently structured Ti3C2Tx MXene-integrated nanofibrillated cellulose films</title><source>Springer Nature - Complete Springer Journals</source><creator>Lakshmanan, Subramanian ; Jurečič, Vida ; Bobnar, Vid ; Kokol, Vanja</creator><creatorcontrib>Lakshmanan, Subramanian ; Jurečič, Vida ; Bobnar, Vid ; Kokol, Vanja</creatorcontrib><description>The fabrication of nanocellulose-based substrates with high dielectric permittivity and anisotropic thermal conductivity to replace synthetic thermoplastics in flexible organic electronics remains a big challenge. Herein, films were prepared from native (CNF) and carboxylated (TCNF) cellulose nanofibrils, with and without the addition of thermally conductive multi-layered Ti 3 C 2 T x MXene, to examine the impact of polar (− OH, − COOH) surface groups on the film morphological, moisturizing, dielectric, and thermal dissipation properties. The electrostatic repulsion and hydrogen bonding interaction between the hydrophilic surface/terminal groups on CNF/TCNF and MXene was shown to render their self-assembly distribution and organization into morphologically differently structured films, and, consequently, different properties. The pristine CNF film achieved high intrinsic dielectric permittivity (ε' ~ 9), which was further increased to almost ε' ~ 14 by increasing (50 wt%) the MXene content. The well-packed and aligned structure of thinner TCNF films enables the tuning of both the composite’s dielectric permittivity (ε' ~ 6) and through-plane thermal conductivity (K ~ 2.9 W/mK), which increased strongly (ε' ~ 17) at higher MXene loading giving in-plane thermal conductivity of ~ 6.3 W/mK. The air-absorbed moisture ability of the films contributes to heat dissipation by releasing it. The dielectric losses remained below 0.1 in all the composite films, showing their potential for application in electronics. Graphic abstract</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-024-06105-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>anisotropy ; Bioorganic Chemistry ; carboxylation ; Cellulose ; cellulose nanofibers ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Dielectric loss ; dielectric permittivity ; Dielectric strength ; Dissipation ; Electronics ; electrostatic interactions ; Glass ; Heat conductivity ; Heat transfer ; hydrogen ; Hydrogen bonding ; hydrophilicity ; Morphology ; Multilayers ; MXenes ; Natural Materials ; Organic Chemistry ; Original Research ; Permittivity ; Physical Chemistry ; Polymer Sciences ; Self-assembly ; Substrates ; Sustainable Development ; Thermal conductivity ; Thermoplastic resins ; thermoplastics</subject><ispartof>Cellulose (London), 2024-09, Vol.31 (13), p.8149-8168</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-c89bd307bd40ccb68275030efa11593c49a248c7afd1d6a3de4e62238286c8563</cites><orcidid>0000-0002-8521-0941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-024-06105-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-024-06105-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Lakshmanan, Subramanian</creatorcontrib><creatorcontrib>Jurečič, Vida</creatorcontrib><creatorcontrib>Bobnar, Vid</creatorcontrib><creatorcontrib>Kokol, Vanja</creatorcontrib><title>Dielectric and thermal conductive properties of differently structured Ti3C2Tx MXene-integrated nanofibrillated cellulose films</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>The fabrication of nanocellulose-based substrates with high dielectric permittivity and anisotropic thermal conductivity to replace synthetic thermoplastics in flexible organic electronics remains a big challenge. Herein, films were prepared from native (CNF) and carboxylated (TCNF) cellulose nanofibrils, with and without the addition of thermally conductive multi-layered Ti 3 C 2 T x MXene, to examine the impact of polar (− OH, − COOH) surface groups on the film morphological, moisturizing, dielectric, and thermal dissipation properties. The electrostatic repulsion and hydrogen bonding interaction between the hydrophilic surface/terminal groups on CNF/TCNF and MXene was shown to render their self-assembly distribution and organization into morphologically differently structured films, and, consequently, different properties. The pristine CNF film achieved high intrinsic dielectric permittivity (ε' ~ 9), which was further increased to almost ε' ~ 14 by increasing (50 wt%) the MXene content. The well-packed and aligned structure of thinner TCNF films enables the tuning of both the composite’s dielectric permittivity (ε' ~ 6) and through-plane thermal conductivity (K ~ 2.9 W/mK), which increased strongly (ε' ~ 17) at higher MXene loading giving in-plane thermal conductivity of ~ 6.3 W/mK. The air-absorbed moisture ability of the films contributes to heat dissipation by releasing it. The dielectric losses remained below 0.1 in all the composite films, showing their potential for application in electronics. Graphic abstract</description><subject>anisotropy</subject><subject>Bioorganic Chemistry</subject><subject>carboxylation</subject><subject>Cellulose</subject><subject>cellulose nanofibers</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Dielectric loss</subject><subject>dielectric permittivity</subject><subject>Dielectric strength</subject><subject>Dissipation</subject><subject>Electronics</subject><subject>electrostatic interactions</subject><subject>Glass</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>hydrogen</subject><subject>Hydrogen bonding</subject><subject>hydrophilicity</subject><subject>Morphology</subject><subject>Multilayers</subject><subject>MXenes</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Permittivity</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Self-assembly</subject><subject>Substrates</subject><subject>Sustainable Development</subject><subject>Thermal conductivity</subject><subject>Thermoplastic resins</subject><subject>thermoplastics</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kTFvFDEQhS0EEsfBH6CyREOzZGzvrr0lOkiIlIjmkNJZPnscHPm8h-1FScVfx5dDikSRamY03xu90SPkPYNPDECeFQaDhA5438HY-o6_ICs2SN4pxW9ekhVM49TWYnpN3pRyBwCT5GxF_nwJGNHWHCw1ydH6E_PeRGrn5BZbw2-khzwfMNeAhc6euuA9Zkw1PtBSc2OWjI5ug9jw7T29vsGEXUgVb7OpbZFMmn3Y5RDj42wxxiXOBakPcV_eklfexILv_tU1-XH-dbv51l19v7jcfL7qLJeydlZNOydA7lwP1u5GxeUAAtAbxoZJ2H4yvFdWGu-YG41w2OPIuVBcjVYNo1iTj6e77ZtfC5aq96EcvZiE81K0YIOQSnDVN_TDf-jdvOTU3DUKhkFMkvFG8RNl81xKRq8POexNftAM9DETfcpEt0z0Yyb6KBInUWlwusX8dPoZ1V-qOZEG</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lakshmanan, Subramanian</creator><creator>Jurečič, Vida</creator><creator>Bobnar, Vid</creator><creator>Kokol, Vanja</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-8521-0941</orcidid></search><sort><creationdate>20240901</creationdate><title>Dielectric and thermal conductive properties of differently structured Ti3C2Tx MXene-integrated nanofibrillated cellulose films</title><author>Lakshmanan, Subramanian ; Jurečič, Vida ; Bobnar, Vid ; Kokol, Vanja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-c89bd307bd40ccb68275030efa11593c49a248c7afd1d6a3de4e62238286c8563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anisotropy</topic><topic>Bioorganic Chemistry</topic><topic>carboxylation</topic><topic>Cellulose</topic><topic>cellulose nanofibers</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Dielectric loss</topic><topic>dielectric permittivity</topic><topic>Dielectric strength</topic><topic>Dissipation</topic><topic>Electronics</topic><topic>electrostatic interactions</topic><topic>Glass</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>hydrogen</topic><topic>Hydrogen bonding</topic><topic>hydrophilicity</topic><topic>Morphology</topic><topic>Multilayers</topic><topic>MXenes</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Permittivity</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Self-assembly</topic><topic>Substrates</topic><topic>Sustainable Development</topic><topic>Thermal conductivity</topic><topic>Thermoplastic resins</topic><topic>thermoplastics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakshmanan, Subramanian</creatorcontrib><creatorcontrib>Jurečič, Vida</creatorcontrib><creatorcontrib>Bobnar, Vid</creatorcontrib><creatorcontrib>Kokol, Vanja</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakshmanan, Subramanian</au><au>Jurečič, Vida</au><au>Bobnar, Vid</au><au>Kokol, Vanja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric and thermal conductive properties of differently structured Ti3C2Tx MXene-integrated nanofibrillated cellulose films</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>31</volume><issue>13</issue><spage>8149</spage><epage>8168</epage><pages>8149-8168</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>The fabrication of nanocellulose-based substrates with high dielectric permittivity and anisotropic thermal conductivity to replace synthetic thermoplastics in flexible organic electronics remains a big challenge. Herein, films were prepared from native (CNF) and carboxylated (TCNF) cellulose nanofibrils, with and without the addition of thermally conductive multi-layered Ti 3 C 2 T x MXene, to examine the impact of polar (− OH, − COOH) surface groups on the film morphological, moisturizing, dielectric, and thermal dissipation properties. The electrostatic repulsion and hydrogen bonding interaction between the hydrophilic surface/terminal groups on CNF/TCNF and MXene was shown to render their self-assembly distribution and organization into morphologically differently structured films, and, consequently, different properties. The pristine CNF film achieved high intrinsic dielectric permittivity (ε' ~ 9), which was further increased to almost ε' ~ 14 by increasing (50 wt%) the MXene content. The well-packed and aligned structure of thinner TCNF films enables the tuning of both the composite’s dielectric permittivity (ε' ~ 6) and through-plane thermal conductivity (K ~ 2.9 W/mK), which increased strongly (ε' ~ 17) at higher MXene loading giving in-plane thermal conductivity of ~ 6.3 W/mK. The air-absorbed moisture ability of the films contributes to heat dissipation by releasing it. The dielectric losses remained below 0.1 in all the composite films, showing their potential for application in electronics. Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-024-06105-2</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8521-0941</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2024-09, Vol.31 (13), p.8149-8168
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_3105539712
source Springer Nature - Complete Springer Journals
subjects anisotropy
Bioorganic Chemistry
carboxylation
Cellulose
cellulose nanofibers
Ceramics
Chemistry
Chemistry and Materials Science
Composites
Dielectric loss
dielectric permittivity
Dielectric strength
Dissipation
Electronics
electrostatic interactions
Glass
Heat conductivity
Heat transfer
hydrogen
Hydrogen bonding
hydrophilicity
Morphology
Multilayers
MXenes
Natural Materials
Organic Chemistry
Original Research
Permittivity
Physical Chemistry
Polymer Sciences
Self-assembly
Substrates
Sustainable Development
Thermal conductivity
Thermoplastic resins
thermoplastics
title Dielectric and thermal conductive properties of differently structured Ti3C2Tx MXene-integrated nanofibrillated cellulose films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20and%20thermal%20conductive%20properties%20of%20differently%20structured%20Ti3C2Tx%20MXene-integrated%20nanofibrillated%20cellulose%20films&rft.jtitle=Cellulose%20(London)&rft.au=Lakshmanan,%20Subramanian&rft.date=2024-09-01&rft.volume=31&rft.issue=13&rft.spage=8149&rft.epage=8168&rft.pages=8149-8168&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-024-06105-2&rft_dat=%3Cproquest_cross%3E3153783284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3105539712&rft_id=info:pmid/&rfr_iscdi=true