Dielectric and thermal conductive properties of differently structured Ti3C2Tx MXene-integrated nanofibrillated cellulose films
The fabrication of nanocellulose-based substrates with high dielectric permittivity and anisotropic thermal conductivity to replace synthetic thermoplastics in flexible organic electronics remains a big challenge. Herein, films were prepared from native (CNF) and carboxylated (TCNF) cellulose nanofi...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2024-09, Vol.31 (13), p.8149-8168 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8168 |
---|---|
container_issue | 13 |
container_start_page | 8149 |
container_title | Cellulose (London) |
container_volume | 31 |
creator | Lakshmanan, Subramanian Jurečič, Vida Bobnar, Vid Kokol, Vanja |
description | The fabrication of nanocellulose-based substrates with high dielectric permittivity and anisotropic thermal conductivity to replace synthetic thermoplastics in flexible organic electronics remains a big challenge. Herein, films were prepared from native (CNF) and carboxylated (TCNF) cellulose nanofibrils, with and without the addition of thermally conductive multi-layered Ti
3
C
2
T
x
MXene, to examine the impact of polar (− OH, − COOH) surface groups on the film morphological, moisturizing, dielectric, and thermal dissipation properties. The electrostatic repulsion and hydrogen bonding interaction between the hydrophilic surface/terminal groups on CNF/TCNF and MXene was shown to render their self-assembly distribution and organization into morphologically differently structured films, and, consequently, different properties. The pristine CNF film achieved high intrinsic dielectric permittivity (ε' ~ 9), which was further increased to almost ε' ~ 14 by increasing (50 wt%) the MXene content. The well-packed and aligned structure of thinner TCNF films enables the tuning of both the composite’s dielectric permittivity (ε' ~ 6) and through-plane thermal conductivity (K ~ 2.9 W/mK), which increased strongly (ε' ~ 17) at higher MXene loading giving in-plane thermal conductivity of ~ 6.3 W/mK. The air-absorbed moisture ability of the films contributes to heat dissipation by releasing it. The dielectric losses remained below 0.1 in all the composite films, showing their potential for application in electronics.
Graphic abstract |
doi_str_mv | 10.1007/s10570-024-06105-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3105539712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153783284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-c89bd307bd40ccb68275030efa11593c49a248c7afd1d6a3de4e62238286c8563</originalsourceid><addsrcrecordid>eNp9kTFvFDEQhS0EEsfBH6CyREOzZGzvrr0lOkiIlIjmkNJZPnscHPm8h-1FScVfx5dDikSRamY03xu90SPkPYNPDECeFQaDhA5438HY-o6_ICs2SN4pxW9ekhVM49TWYnpN3pRyBwCT5GxF_nwJGNHWHCw1ydH6E_PeRGrn5BZbw2-khzwfMNeAhc6euuA9Zkw1PtBSc2OWjI5ug9jw7T29vsGEXUgVb7OpbZFMmn3Y5RDj42wxxiXOBakPcV_eklfexILv_tU1-XH-dbv51l19v7jcfL7qLJeydlZNOydA7lwP1u5GxeUAAtAbxoZJ2H4yvFdWGu-YG41w2OPIuVBcjVYNo1iTj6e77ZtfC5aq96EcvZiE81K0YIOQSnDVN_TDf-jdvOTU3DUKhkFMkvFG8RNl81xKRq8POexNftAM9DETfcpEt0z0Yyb6KBInUWlwusX8dPoZ1V-qOZEG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3105539712</pqid></control><display><type>article</type><title>Dielectric and thermal conductive properties of differently structured Ti3C2Tx MXene-integrated nanofibrillated cellulose films</title><source>Springer Nature - Complete Springer Journals</source><creator>Lakshmanan, Subramanian ; Jurečič, Vida ; Bobnar, Vid ; Kokol, Vanja</creator><creatorcontrib>Lakshmanan, Subramanian ; Jurečič, Vida ; Bobnar, Vid ; Kokol, Vanja</creatorcontrib><description>The fabrication of nanocellulose-based substrates with high dielectric permittivity and anisotropic thermal conductivity to replace synthetic thermoplastics in flexible organic electronics remains a big challenge. Herein, films were prepared from native (CNF) and carboxylated (TCNF) cellulose nanofibrils, with and without the addition of thermally conductive multi-layered Ti
3
C
2
T
x
MXene, to examine the impact of polar (− OH, − COOH) surface groups on the film morphological, moisturizing, dielectric, and thermal dissipation properties. The electrostatic repulsion and hydrogen bonding interaction between the hydrophilic surface/terminal groups on CNF/TCNF and MXene was shown to render their self-assembly distribution and organization into morphologically differently structured films, and, consequently, different properties. The pristine CNF film achieved high intrinsic dielectric permittivity (ε' ~ 9), which was further increased to almost ε' ~ 14 by increasing (50 wt%) the MXene content. The well-packed and aligned structure of thinner TCNF films enables the tuning of both the composite’s dielectric permittivity (ε' ~ 6) and through-plane thermal conductivity (K ~ 2.9 W/mK), which increased strongly (ε' ~ 17) at higher MXene loading giving in-plane thermal conductivity of ~ 6.3 W/mK. The air-absorbed moisture ability of the films contributes to heat dissipation by releasing it. The dielectric losses remained below 0.1 in all the composite films, showing their potential for application in electronics.
Graphic abstract</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-024-06105-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>anisotropy ; Bioorganic Chemistry ; carboxylation ; Cellulose ; cellulose nanofibers ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Dielectric loss ; dielectric permittivity ; Dielectric strength ; Dissipation ; Electronics ; electrostatic interactions ; Glass ; Heat conductivity ; Heat transfer ; hydrogen ; Hydrogen bonding ; hydrophilicity ; Morphology ; Multilayers ; MXenes ; Natural Materials ; Organic Chemistry ; Original Research ; Permittivity ; Physical Chemistry ; Polymer Sciences ; Self-assembly ; Substrates ; Sustainable Development ; Thermal conductivity ; Thermoplastic resins ; thermoplastics</subject><ispartof>Cellulose (London), 2024-09, Vol.31 (13), p.8149-8168</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-c89bd307bd40ccb68275030efa11593c49a248c7afd1d6a3de4e62238286c8563</cites><orcidid>0000-0002-8521-0941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-024-06105-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-024-06105-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Lakshmanan, Subramanian</creatorcontrib><creatorcontrib>Jurečič, Vida</creatorcontrib><creatorcontrib>Bobnar, Vid</creatorcontrib><creatorcontrib>Kokol, Vanja</creatorcontrib><title>Dielectric and thermal conductive properties of differently structured Ti3C2Tx MXene-integrated nanofibrillated cellulose films</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>The fabrication of nanocellulose-based substrates with high dielectric permittivity and anisotropic thermal conductivity to replace synthetic thermoplastics in flexible organic electronics remains a big challenge. Herein, films were prepared from native (CNF) and carboxylated (TCNF) cellulose nanofibrils, with and without the addition of thermally conductive multi-layered Ti
3
C
2
T
x
MXene, to examine the impact of polar (− OH, − COOH) surface groups on the film morphological, moisturizing, dielectric, and thermal dissipation properties. The electrostatic repulsion and hydrogen bonding interaction between the hydrophilic surface/terminal groups on CNF/TCNF and MXene was shown to render their self-assembly distribution and organization into morphologically differently structured films, and, consequently, different properties. The pristine CNF film achieved high intrinsic dielectric permittivity (ε' ~ 9), which was further increased to almost ε' ~ 14 by increasing (50 wt%) the MXene content. The well-packed and aligned structure of thinner TCNF films enables the tuning of both the composite’s dielectric permittivity (ε' ~ 6) and through-plane thermal conductivity (K ~ 2.9 W/mK), which increased strongly (ε' ~ 17) at higher MXene loading giving in-plane thermal conductivity of ~ 6.3 W/mK. The air-absorbed moisture ability of the films contributes to heat dissipation by releasing it. The dielectric losses remained below 0.1 in all the composite films, showing their potential for application in electronics.
Graphic abstract</description><subject>anisotropy</subject><subject>Bioorganic Chemistry</subject><subject>carboxylation</subject><subject>Cellulose</subject><subject>cellulose nanofibers</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Dielectric loss</subject><subject>dielectric permittivity</subject><subject>Dielectric strength</subject><subject>Dissipation</subject><subject>Electronics</subject><subject>electrostatic interactions</subject><subject>Glass</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>hydrogen</subject><subject>Hydrogen bonding</subject><subject>hydrophilicity</subject><subject>Morphology</subject><subject>Multilayers</subject><subject>MXenes</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Permittivity</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Self-assembly</subject><subject>Substrates</subject><subject>Sustainable Development</subject><subject>Thermal conductivity</subject><subject>Thermoplastic resins</subject><subject>thermoplastics</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kTFvFDEQhS0EEsfBH6CyREOzZGzvrr0lOkiIlIjmkNJZPnscHPm8h-1FScVfx5dDikSRamY03xu90SPkPYNPDECeFQaDhA5438HY-o6_ICs2SN4pxW9ekhVM49TWYnpN3pRyBwCT5GxF_nwJGNHWHCw1ydH6E_PeRGrn5BZbw2-khzwfMNeAhc6euuA9Zkw1PtBSc2OWjI5ug9jw7T29vsGEXUgVb7OpbZFMmn3Y5RDj42wxxiXOBakPcV_eklfexILv_tU1-XH-dbv51l19v7jcfL7qLJeydlZNOydA7lwP1u5GxeUAAtAbxoZJ2H4yvFdWGu-YG41w2OPIuVBcjVYNo1iTj6e77ZtfC5aq96EcvZiE81K0YIOQSnDVN_TDf-jdvOTU3DUKhkFMkvFG8RNl81xKRq8POexNftAM9DETfcpEt0z0Yyb6KBInUWlwusX8dPoZ1V-qOZEG</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lakshmanan, Subramanian</creator><creator>Jurečič, Vida</creator><creator>Bobnar, Vid</creator><creator>Kokol, Vanja</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-8521-0941</orcidid></search><sort><creationdate>20240901</creationdate><title>Dielectric and thermal conductive properties of differently structured Ti3C2Tx MXene-integrated nanofibrillated cellulose films</title><author>Lakshmanan, Subramanian ; Jurečič, Vida ; Bobnar, Vid ; Kokol, Vanja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-c89bd307bd40ccb68275030efa11593c49a248c7afd1d6a3de4e62238286c8563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anisotropy</topic><topic>Bioorganic Chemistry</topic><topic>carboxylation</topic><topic>Cellulose</topic><topic>cellulose nanofibers</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Dielectric loss</topic><topic>dielectric permittivity</topic><topic>Dielectric strength</topic><topic>Dissipation</topic><topic>Electronics</topic><topic>electrostatic interactions</topic><topic>Glass</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>hydrogen</topic><topic>Hydrogen bonding</topic><topic>hydrophilicity</topic><topic>Morphology</topic><topic>Multilayers</topic><topic>MXenes</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Permittivity</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Self-assembly</topic><topic>Substrates</topic><topic>Sustainable Development</topic><topic>Thermal conductivity</topic><topic>Thermoplastic resins</topic><topic>thermoplastics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakshmanan, Subramanian</creatorcontrib><creatorcontrib>Jurečič, Vida</creatorcontrib><creatorcontrib>Bobnar, Vid</creatorcontrib><creatorcontrib>Kokol, Vanja</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakshmanan, Subramanian</au><au>Jurečič, Vida</au><au>Bobnar, Vid</au><au>Kokol, Vanja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric and thermal conductive properties of differently structured Ti3C2Tx MXene-integrated nanofibrillated cellulose films</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>31</volume><issue>13</issue><spage>8149</spage><epage>8168</epage><pages>8149-8168</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>The fabrication of nanocellulose-based substrates with high dielectric permittivity and anisotropic thermal conductivity to replace synthetic thermoplastics in flexible organic electronics remains a big challenge. Herein, films were prepared from native (CNF) and carboxylated (TCNF) cellulose nanofibrils, with and without the addition of thermally conductive multi-layered Ti
3
C
2
T
x
MXene, to examine the impact of polar (− OH, − COOH) surface groups on the film morphological, moisturizing, dielectric, and thermal dissipation properties. The electrostatic repulsion and hydrogen bonding interaction between the hydrophilic surface/terminal groups on CNF/TCNF and MXene was shown to render their self-assembly distribution and organization into morphologically differently structured films, and, consequently, different properties. The pristine CNF film achieved high intrinsic dielectric permittivity (ε' ~ 9), which was further increased to almost ε' ~ 14 by increasing (50 wt%) the MXene content. The well-packed and aligned structure of thinner TCNF films enables the tuning of both the composite’s dielectric permittivity (ε' ~ 6) and through-plane thermal conductivity (K ~ 2.9 W/mK), which increased strongly (ε' ~ 17) at higher MXene loading giving in-plane thermal conductivity of ~ 6.3 W/mK. The air-absorbed moisture ability of the films contributes to heat dissipation by releasing it. The dielectric losses remained below 0.1 in all the composite films, showing their potential for application in electronics.
Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-024-06105-2</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8521-0941</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2024-09, Vol.31 (13), p.8149-8168 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_3105539712 |
source | Springer Nature - Complete Springer Journals |
subjects | anisotropy Bioorganic Chemistry carboxylation Cellulose cellulose nanofibers Ceramics Chemistry Chemistry and Materials Science Composites Dielectric loss dielectric permittivity Dielectric strength Dissipation Electronics electrostatic interactions Glass Heat conductivity Heat transfer hydrogen Hydrogen bonding hydrophilicity Morphology Multilayers MXenes Natural Materials Organic Chemistry Original Research Permittivity Physical Chemistry Polymer Sciences Self-assembly Substrates Sustainable Development Thermal conductivity Thermoplastic resins thermoplastics |
title | Dielectric and thermal conductive properties of differently structured Ti3C2Tx MXene-integrated nanofibrillated cellulose films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20and%20thermal%20conductive%20properties%20of%20differently%20structured%20Ti3C2Tx%20MXene-integrated%20nanofibrillated%20cellulose%20films&rft.jtitle=Cellulose%20(London)&rft.au=Lakshmanan,%20Subramanian&rft.date=2024-09-01&rft.volume=31&rft.issue=13&rft.spage=8149&rft.epage=8168&rft.pages=8149-8168&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-024-06105-2&rft_dat=%3Cproquest_cross%3E3153783284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3105539712&rft_id=info:pmid/&rfr_iscdi=true |