Continuous Monitoring of Water Levels for Industrial Boilers Using Single‐Stage Object Recognition YOLOv5
This paper presents a measurement method that utilizes object recognition technology for continuous and quantitative real‐time monitoring of water levels in industrial boilers. Real‐time videos of water levels were monitored using a small camera, and the YOLO algorithm, a single‐stage detector, was...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2024-01, Vol.2024 (1) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | International journal of energy research |
container_volume | 2024 |
creator | Kim, Jongwon Kwon, Minjun So, Byeongchan Kim, Sewon So, Hongyun |
description | This paper presents a measurement method that utilizes object recognition technology for continuous and quantitative real‐time monitoring of water levels in industrial boilers. Real‐time videos of water levels were monitored using a small camera, and the YOLO algorithm, a single‐stage detector, was employed to use the bounding boxes of detected objects within the video as variables, directly measuring the length ratio for each frame. The method demonstrated a high level of accuracy in water‐level measurement, with an average of 99.02%, and a stable performance, with a fluctuation of 0.13% in continuous measurements. Consequently, the proposed measurement method proves feasible for quantifying continuous water levels in industrial inspection systems even in low‐resource environments. These results demonstrate a new mechanism for monitoring technology, without requiring text detection, showing the potential for improving efficiency in complex boiler systems and the feasibility of reliable water‐level measurement and control. |
doi_str_mv | 10.1155/2024/6107765 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3104856303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104856303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c150t-bb9ef60284abf46b58e1987590ca1ecac91bcdeaa1cba1182337e6af2722efb93</originalsourceid><addsrcrecordid>eNotkM1KAzEUhYMoWKs7HyDg1rG5k_nLUos_hZGCtVhXQ5LelKnjpCaZgjsfwWf0SZzSbu5Z3I9z4CPkEtgNQJqOYhYnowxYnmfpERkAEyICSBbHZMB4xiPB8sUpOfN-zVj_g3xAPsa2DXXb2c7TZ9vWwbq6XVFr6JsM6GiJW2w8NdbRSbvsfHC1bOidrRt0ns79Dp71p8G_n99ZkCukU7VGHegLarvqC2vb0vdpOd2m5-TEyMbjxSGHZP5w_zp-isrp42R8W0YaUhYipQSajMVFIpVJMpUWCKLIU8G0BNRSC1B6iVKCVhKgiDnPMZMmzuMYjRJ8SK72vRtnvzr0oVrbzrX9ZMWBJUWaccZ76npPaWe9d2iqjas_pfuugFU7ndVOZ3XQyf8BYsdpug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104856303</pqid></control><display><type>article</type><title>Continuous Monitoring of Water Levels for Industrial Boilers Using Single‐Stage Object Recognition YOLOv5</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Kim, Jongwon ; Kwon, Minjun ; So, Byeongchan ; Kim, Sewon ; So, Hongyun</creator><contributor>Jalali, Payman ; Payman Jalali</contributor><creatorcontrib>Kim, Jongwon ; Kwon, Minjun ; So, Byeongchan ; Kim, Sewon ; So, Hongyun ; Jalali, Payman ; Payman Jalali</creatorcontrib><description>This paper presents a measurement method that utilizes object recognition technology for continuous and quantitative real‐time monitoring of water levels in industrial boilers. Real‐time videos of water levels were monitored using a small camera, and the YOLO algorithm, a single‐stage detector, was employed to use the bounding boxes of detected objects within the video as variables, directly measuring the length ratio for each frame. The method demonstrated a high level of accuracy in water‐level measurement, with an average of 99.02%, and a stable performance, with a fluctuation of 0.13% in continuous measurements. Consequently, the proposed measurement method proves feasible for quantifying continuous water levels in industrial inspection systems even in low‐resource environments. These results demonstrate a new mechanism for monitoring technology, without requiring text detection, showing the potential for improving efficiency in complex boiler systems and the feasibility of reliable water‐level measurement and control.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2024/6107765</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Algorithms ; Boilers ; Efficiency ; Environmental monitoring ; Feasibility ; Gauges ; Inspection ; Measurement methods ; Measurement techniques ; Monitoring ; Object recognition ; Pattern recognition ; Real time ; Time measurement ; Water level fluctuations ; Water levels ; Water monitoring ; Water supply</subject><ispartof>International journal of energy research, 2024-01, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Jongwon Kim et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c150t-bb9ef60284abf46b58e1987590ca1ecac91bcdeaa1cba1182337e6af2722efb93</cites><orcidid>0000-0002-2982-9926 ; 0000-0002-8523-8012 ; 0000-0001-7469-885X ; 0000-0003-3870-388X ; 0000-0002-2579-9344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3104856303/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3104856303?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,21369,27905,27906,33725,43786,64364,64368,72218,74051</link.rule.ids></links><search><contributor>Jalali, Payman</contributor><contributor>Payman Jalali</contributor><creatorcontrib>Kim, Jongwon</creatorcontrib><creatorcontrib>Kwon, Minjun</creatorcontrib><creatorcontrib>So, Byeongchan</creatorcontrib><creatorcontrib>Kim, Sewon</creatorcontrib><creatorcontrib>So, Hongyun</creatorcontrib><title>Continuous Monitoring of Water Levels for Industrial Boilers Using Single‐Stage Object Recognition YOLOv5</title><title>International journal of energy research</title><description>This paper presents a measurement method that utilizes object recognition technology for continuous and quantitative real‐time monitoring of water levels in industrial boilers. Real‐time videos of water levels were monitored using a small camera, and the YOLO algorithm, a single‐stage detector, was employed to use the bounding boxes of detected objects within the video as variables, directly measuring the length ratio for each frame. The method demonstrated a high level of accuracy in water‐level measurement, with an average of 99.02%, and a stable performance, with a fluctuation of 0.13% in continuous measurements. Consequently, the proposed measurement method proves feasible for quantifying continuous water levels in industrial inspection systems even in low‐resource environments. These results demonstrate a new mechanism for monitoring technology, without requiring text detection, showing the potential for improving efficiency in complex boiler systems and the feasibility of reliable water‐level measurement and control.</description><subject>Algorithms</subject><subject>Boilers</subject><subject>Efficiency</subject><subject>Environmental monitoring</subject><subject>Feasibility</subject><subject>Gauges</subject><subject>Inspection</subject><subject>Measurement methods</subject><subject>Measurement techniques</subject><subject>Monitoring</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Real time</subject><subject>Time measurement</subject><subject>Water level fluctuations</subject><subject>Water levels</subject><subject>Water monitoring</subject><subject>Water supply</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkM1KAzEUhYMoWKs7HyDg1rG5k_nLUos_hZGCtVhXQ5LelKnjpCaZgjsfwWf0SZzSbu5Z3I9z4CPkEtgNQJqOYhYnowxYnmfpERkAEyICSBbHZMB4xiPB8sUpOfN-zVj_g3xAPsa2DXXb2c7TZ9vWwbq6XVFr6JsM6GiJW2w8NdbRSbvsfHC1bOidrRt0ns79Dp71p8G_n99ZkCukU7VGHegLarvqC2vb0vdpOd2m5-TEyMbjxSGHZP5w_zp-isrp42R8W0YaUhYipQSajMVFIpVJMpUWCKLIU8G0BNRSC1B6iVKCVhKgiDnPMZMmzuMYjRJ8SK72vRtnvzr0oVrbzrX9ZMWBJUWaccZ76npPaWe9d2iqjas_pfuugFU7ndVOZ3XQyf8BYsdpug</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Kim, Jongwon</creator><creator>Kwon, Minjun</creator><creator>So, Byeongchan</creator><creator>Kim, Sewon</creator><creator>So, Hongyun</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2982-9926</orcidid><orcidid>https://orcid.org/0000-0002-8523-8012</orcidid><orcidid>https://orcid.org/0000-0001-7469-885X</orcidid><orcidid>https://orcid.org/0000-0003-3870-388X</orcidid><orcidid>https://orcid.org/0000-0002-2579-9344</orcidid></search><sort><creationdate>20240101</creationdate><title>Continuous Monitoring of Water Levels for Industrial Boilers Using Single‐Stage Object Recognition YOLOv5</title><author>Kim, Jongwon ; Kwon, Minjun ; So, Byeongchan ; Kim, Sewon ; So, Hongyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c150t-bb9ef60284abf46b58e1987590ca1ecac91bcdeaa1cba1182337e6af2722efb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Boilers</topic><topic>Efficiency</topic><topic>Environmental monitoring</topic><topic>Feasibility</topic><topic>Gauges</topic><topic>Inspection</topic><topic>Measurement methods</topic><topic>Measurement techniques</topic><topic>Monitoring</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Real time</topic><topic>Time measurement</topic><topic>Water level fluctuations</topic><topic>Water levels</topic><topic>Water monitoring</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jongwon</creatorcontrib><creatorcontrib>Kwon, Minjun</creatorcontrib><creatorcontrib>So, Byeongchan</creatorcontrib><creatorcontrib>Kim, Sewon</creatorcontrib><creatorcontrib>So, Hongyun</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jongwon</au><au>Kwon, Minjun</au><au>So, Byeongchan</au><au>Kim, Sewon</au><au>So, Hongyun</au><au>Jalali, Payman</au><au>Payman Jalali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Monitoring of Water Levels for Industrial Boilers Using Single‐Stage Object Recognition YOLOv5</atitle><jtitle>International journal of energy research</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>This paper presents a measurement method that utilizes object recognition technology for continuous and quantitative real‐time monitoring of water levels in industrial boilers. Real‐time videos of water levels were monitored using a small camera, and the YOLO algorithm, a single‐stage detector, was employed to use the bounding boxes of detected objects within the video as variables, directly measuring the length ratio for each frame. The method demonstrated a high level of accuracy in water‐level measurement, with an average of 99.02%, and a stable performance, with a fluctuation of 0.13% in continuous measurements. Consequently, the proposed measurement method proves feasible for quantifying continuous water levels in industrial inspection systems even in low‐resource environments. These results demonstrate a new mechanism for monitoring technology, without requiring text detection, showing the potential for improving efficiency in complex boiler systems and the feasibility of reliable water‐level measurement and control.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1155/2024/6107765</doi><orcidid>https://orcid.org/0000-0002-2982-9926</orcidid><orcidid>https://orcid.org/0000-0002-8523-8012</orcidid><orcidid>https://orcid.org/0000-0001-7469-885X</orcidid><orcidid>https://orcid.org/0000-0003-3870-388X</orcidid><orcidid>https://orcid.org/0000-0002-2579-9344</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2024-01, Vol.2024 (1) |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_3104856303 |
source | DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Algorithms Boilers Efficiency Environmental monitoring Feasibility Gauges Inspection Measurement methods Measurement techniques Monitoring Object recognition Pattern recognition Real time Time measurement Water level fluctuations Water levels Water monitoring Water supply |
title | Continuous Monitoring of Water Levels for Industrial Boilers Using Single‐Stage Object Recognition YOLOv5 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Monitoring%20of%20Water%20Levels%20for%20Industrial%20Boilers%20Using%20Single%E2%80%90Stage%20Object%20Recognition%20YOLOv5&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Kim,%20Jongwon&rft.date=2024-01-01&rft.volume=2024&rft.issue=1&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2024/6107765&rft_dat=%3Cproquest_cross%3E3104856303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104856303&rft_id=info:pmid/&rfr_iscdi=true |