Uniform Positivity of the Lyapunov Exponent for Monotone Potentials Generated by the Doubling Map

We show that for any doubling map generated C 1 monotone potential with derivative uniformly bounded away from zero and infinity, the Lyapunov exponent of the associated Schrödinger operators is bounded below by log λ - C for all energies, where C depends only on the potential. In particular, it ans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2024-10, Vol.405 (10), Article 231
1. Verfasser: Zhang, Zhenghe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Communications in mathematical physics
container_volume 405
creator Zhang, Zhenghe
description We show that for any doubling map generated C 1 monotone potential with derivative uniformly bounded away from zero and infinity, the Lyapunov exponent of the associated Schrödinger operators is bounded below by log λ - C for all energies, where C depends only on the potential. In particular, it answers an open question [ D , Problem 5] raised by D. Damanik.
doi_str_mv 10.1007/s00220-024-05109-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3104806910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104806910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-110ccae3e626e198b70531551496caaa1a9724e9f455104e6791a4aa711324223</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngeXUmm802R6m1Ci16sOeQrtm6pU3WJFvctzd1BW-ehhm-7x_4CblGuEWA8i4AMAYZMJ5BgSAzOCEj5DnLQKI4JSMAhCwXKM7JRQhbAJBMiBHRK9vUzu_pqwtNbA5N7KmrafwwdNHrtrPuQGdfrbPGRppAunTWxbQmIaZbo3eBzo01XkfzTtf9j_rguvWusRu61O0lOasTZK5-55isHmdv06ds8TJ_nt4vsopxHjNEqCptciOYMCgn6xKKHIsCuRSV1hq1LBk3subpBtyIUqLmWpeIOeOM5WNyM-S23n12JkS1dZ236aXKkzABIRESxQaq8i4Eb2rV-mavfa8Q1LFKNVSpUpXqp0p1lPJBCgm2G-P_ov-xvgFFv3Wq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104806910</pqid></control><display><type>article</type><title>Uniform Positivity of the Lyapunov Exponent for Monotone Potentials Generated by the Doubling Map</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Zhenghe</creator><creatorcontrib>Zhang, Zhenghe</creatorcontrib><description>We show that for any doubling map generated C 1 monotone potential with derivative uniformly bounded away from zero and infinity, the Lyapunov exponent of the associated Schrödinger operators is bounded below by log λ - C for all energies, where C depends only on the potential. In particular, it answers an open question [ D , Problem 5] raised by D. Damanik.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-024-05109-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Liapunov exponents ; Mathematical and Computational Physics ; Mathematical Physics ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Schrodinger equation ; Theoretical</subject><ispartof>Communications in mathematical physics, 2024-10, Vol.405 (10), Article 231</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-110ccae3e626e198b70531551496caaa1a9724e9f455104e6791a4aa711324223</cites><orcidid>0000-0001-5942-3110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-024-05109-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-024-05109-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Zhang, Zhenghe</creatorcontrib><title>Uniform Positivity of the Lyapunov Exponent for Monotone Potentials Generated by the Doubling Map</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We show that for any doubling map generated C 1 monotone potential with derivative uniformly bounded away from zero and infinity, the Lyapunov exponent of the associated Schrödinger operators is bounded below by log λ - C for all energies, where C depends only on the potential. In particular, it answers an open question [ D , Problem 5] raised by D. Damanik.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Liapunov exponents</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Schrodinger equation</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFKAzEQhoMoWKsv4CngeXUmm802R6m1Ci16sOeQrtm6pU3WJFvctzd1BW-ehhm-7x_4CblGuEWA8i4AMAYZMJ5BgSAzOCEj5DnLQKI4JSMAhCwXKM7JRQhbAJBMiBHRK9vUzu_pqwtNbA5N7KmrafwwdNHrtrPuQGdfrbPGRppAunTWxbQmIaZbo3eBzo01XkfzTtf9j_rguvWusRu61O0lOasTZK5-55isHmdv06ds8TJ_nt4vsopxHjNEqCptciOYMCgn6xKKHIsCuRSV1hq1LBk3subpBtyIUqLmWpeIOeOM5WNyM-S23n12JkS1dZ236aXKkzABIRESxQaq8i4Eb2rV-mavfa8Q1LFKNVSpUpXqp0p1lPJBCgm2G-P_ov-xvgFFv3Wq</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhang, Zhenghe</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5942-3110</orcidid></search><sort><creationdate>20241001</creationdate><title>Uniform Positivity of the Lyapunov Exponent for Monotone Potentials Generated by the Doubling Map</title><author>Zhang, Zhenghe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-110ccae3e626e198b70531551496caaa1a9724e9f455104e6791a4aa711324223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Liapunov exponents</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Schrodinger equation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhenghe</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhenghe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform Positivity of the Lyapunov Exponent for Monotone Potentials Generated by the Doubling Map</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>405</volume><issue>10</issue><artnum>231</artnum><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We show that for any doubling map generated C 1 monotone potential with derivative uniformly bounded away from zero and infinity, the Lyapunov exponent of the associated Schrödinger operators is bounded below by log λ - C for all energies, where C depends only on the potential. In particular, it answers an open question [ D , Problem 5] raised by D. Damanik.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-024-05109-0</doi><orcidid>https://orcid.org/0000-0001-5942-3110</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2024-10, Vol.405 (10), Article 231
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_3104806910
source SpringerLink Journals - AutoHoldings
subjects Classical and Quantum Gravitation
Complex Systems
Liapunov exponents
Mathematical and Computational Physics
Mathematical Physics
Operators (mathematics)
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Schrodinger equation
Theoretical
title Uniform Positivity of the Lyapunov Exponent for Monotone Potentials Generated by the Doubling Map
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20Positivity%20of%20the%20Lyapunov%20Exponent%20for%20Monotone%20Potentials%20Generated%20by%20the%20Doubling%20Map&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Zhang,%20Zhenghe&rft.date=2024-10-01&rft.volume=405&rft.issue=10&rft.artnum=231&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-024-05109-0&rft_dat=%3Cproquest_cross%3E3104806910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104806910&rft_id=info:pmid/&rfr_iscdi=true